MATERIAL SELECTION SUPPORT

Product guide

The global leader in engineering thermoplastics

mcam.com

With more than 80 years of experience, 46 branch offices in 19 countries, and a team of technical service experts, engineers, and application development managers, the Advanced Materials division of the Mitsubishi Chemical Group (MCG) is the global leader for researching, developing, and manufacturing high-performance engineered polymer materials. Our products make the world a safer place by providing solutions across many industries:

- Aerospace
- Automotive
- Renewable Energy
- Advanced Fluid Management
- Food & Pharma
- Heavy Equipment
- Linings
- Medical & Life Science
- Semiconductor & Electronics
- Transportation

Giving back more than we take

For the MCG Advanced Materials division, sustainability is more than just a slogan. It is woven into our company mission and underpins our corporate vision for the future.

Everything we do as a company, a partner and an industry leader is guided by the principles of the vision of our holding company Mitsubishi Chemical Group Corporation (MCGC).

The Group is committed to sustainability which we express through our vision "Realizing KAITEKI". KAITEKI means "The sustainable wellbeing of people, society, and the Earth". Together, we aim to provide products, technologies, and services that contribute to the global sustainable development.

Realizing our sustainability vision means meeting our own needs without compromising the ability of future generations to meet theirs. More than ever before, we believe achieving excellence means taking decisive action in the present to lay the groundwork for an equally beneficial future.

Table of contents

	Classification of Plastics		4					
01	AEP							
	Advanced Engineering Plastics for Elevated Temperature Range up to 425°C							
		Duratron® PBI	6					
		Duratron® PI	7					
		Duratron [®] PAI	8					
02	AEP							
	Advanced Engineering Plastics f	or Elevated Temperature Range up to 230 °C						
		Ketron® PEEK	9					
		Techtron [®] PPS	11					
		Sultron [®] PSU	12					
		Duratron® PEI	13					
		Fluorosint® PTFE	14					
		Semitron® ESd [electrostatic dissipative plastics]	16					
03	GEP							
	General Engineering Plastics for	Medium Temperature Range up to 120 °C						
		Ertalon [®] Nylatron [®]	18					
		Ertacetal® Acetron®	22					
		Ertalyte®	24					
		Altron™ PC	25					
		Flextron™ TPE Nvlatron® RIM	26					
		Flame Retardant Products	27					
04	PE							
	Polyethylene Grades for Low Ter	nperature Range up to 85 - 110 °C						
		TIVAR [®] 1000 UHMW-PE Standard Grades	29					
		TIVAR [®] UHMW-PE Speciality Grades	32					
		PE 500 HMW-PE	33					
		Polyethylene Selection Table	33					
05	FOOD		00					
	Food Contact Compliance Status							
	· · · · · · · · · · · · · · · · · · ·	Food Contact Compliance Status of Advanced Engineering Plastics	34					
		Food Contact Compliance Status of General Engineering Plastics	0.					
		Food Contact Compliance Status of [U]HMW-PE Plastics						
06	LIN							
	Lining Solutions							
		Flow promoting lining solutions	35					
		System TIVAR [®] Engineering Lining Solutions	36					
		QuickSilver® Truck Liners	37					
		TIVAR® DrySlide Parcel Handling	38					
	Physical Properties		39					

Classification of Plastics

The materials performance pyramid ranks the most common thermoplastics according to their temperature performance. Amongst these materials, different "families" can be recognized, all exhibiting high value in use within numerous applications.

Classification of Plastics

Semi-crystalline Ertalon[®]/Nylatron[®] PA grades offer good mechanical strength and stiffness, high toughness,low friction and very good wear resistance. These properties make them ideal replacements for a wide variety of materials from metal to rubber.

Ertacetal[®] POM provides high mechanical strength and stiffness coupled with enhanced dimensional stability. As a semi-crystalline material, Ertacetal is characterised by a low coefficient of friction and good wear properties [wet environment].

Unreinforced, semi-crystalline Ertalyte® PET offers very good dimensional stability in combination with excellent wear resistance, low friction, high strength, creep resistance and resistance to moderate acidic solutions.

Although exhibiting considerably lower mechanical strength, stiffness and creep resistance than Ertalon[®]/ Nylatron[®], Ertacetal[®] and Ertalyte[®], the range of TIVAR[®] UHMW-PE grades meets the demands of many industries and this from cryogenic temperatures up to about 85 °C. These materials show outstanding impact strength, excellent wear and abrasion resistance, low friction and excellent release properties. Duratron[®] PBI, Duratron[®] PI and Duratron[®] PAI are designed for top performance in both structural and friction & wear applications. Characterised by an extreme temperature resistance [up to 310 °C continuously for Duratron[®] PBI], these materials perform where others would fail.

The semi-crystalline Ketron® PEEK, Techtron® PPS and Fluorosint® PTFE typically offer a combination of excellent chemical and mechanical properties, also at elevated temperatures. These materials can be used for both structural and friction & wear applications.

The amorphous Sultron® PPSU, Sultron® PSU and Duratron® PEI exhibit an outstanding retention of their mechanical properties up to the glass transition temperature and excellent electrical properties. Additionally, their hydrolysis resistance [autoclavability] offers great possibilities for structural parts in medical, pharmaceutical and dairy industries.

From Semitron® ESd 225 – a static dissipative acetal grade – up to Semitron® ESd 520HR – a static dissipative polyamide-imide grade – a comprehensive range of Semitron® ESd grades are available to service static dissipative needs over a broad range of temperatures and mechanical loading conditions.

Duratron[®] PBI Polybenzimidazole [PBI]

Duratron[®] PBI is the highest performance engineering thermoplastic available today. Thanks to its uniqueproperty profile, Duratron[®] PBI might bring the ultimate solution when no other plastics material can.

Main Characteristics

- Extremely high maximum allowable service temperature in air [310 °C continuously, up to 500 °C for short periods of time]
- Excellent retention of mechanical strength, stiffness and creep resistance over a wide temperature range
- Excellent wear and frictional behaviour
- Extremely low coefficient of linear thermal expansion
- Excellent resistance against high energy radiation [gamma- and X-rays]
- · Inherent low flammability
- High purity in terms of ionic contamination
- Good electrical insulating and dielectric properties

Grades

Duratron[®] CU60 PBI [PBI; black]

Duratron[®] CU60 PBI offers the highest temperature resistance and best mechanical property retention over 200 °C of all unfilled thermoplastics. Duratron[®] CU60 PBI is very "clean" in terms of ionic impurity and does not outgas [except water]. These characteristics make this material extremely attractive to high-tech industries such as semiconductor and aerospace industries.

Usually Duratron[®] CU60 PBI is used in critical components to decrease maintenance costs and to gain valuable production "uptime". It is used to replace metals and ceramics in pump components, valve seats [high tech valves], bearings, rollers, high temperature insulators.

Tech Notes: High tolerance fabricated components should be stored in sealed containers [usually polybags with desiccant] to avoid dimensionalchanges due to moisture absorption. Components rapidly exposed to temperatures above 200 °C should be "dried" prior to use or kept dry to avoid deformation from thermal shock.

Duratron[®] PI Polyimide [PI]

Duratron® PI offers a combination of properties that allows it to excel in applications requiring low wear and long life in harsh environments. Duratron® PI is an exceptional value for applications where thermal requirements exclude Duratron® PAI and do not require the extraordinary thermal resistance of Duratron® PBI. Consequently, Duratron® PI parts are put to use for very demanding applications in the automotive, aerospace, defence, electrical, glass, nuclear and semiconductor industries.

Main Characteristics

- Extremely high max. allowable service temperature in air [240 °C continuously, with short term excursions up to 450 °C]
- Excellent retention of mechanical strength, stiffness and creep resistance over a wide range of temperatures
- Good sliding properties and excellent wear resistance
- · Very good dimensional stability
- Inherent low flammability
- Good electrical insulating and dielectric properties [only applies to Duratron® D7000 PI]
- · Low outgassing in vacuum [dry material]
- High purity in terms of ionic contamination [Duratron[®] D7000 PI]
- Excellent resistance against high energy radiation

Applications

Valve and pump seats, seals and wear surfaces, structural and wear parts for semiconductor and electronics manufacturing, fixtures and handling parts for glass and plastics manufacturing, metal replacement for aerospace components.

Grades

Duratron® PI is available in several grades for structural and wear applications and in the broadest range of shapes - particularly thick sheets, larger sheet geometries and heavy-wall tubes.

Duratron® D7000 PI [PI; natural (chestnut)]

Duratron[®] D7000 PI - the basic grade within the Duratron[®] PI family - is made from unfilled polyimide resin and provides maximum physical properties and best electrical and thermal insulation.

Duratron® D7015G PI [PI + graphite; grey-black]

This grade contains 15 % graphite, added to provide long wear and low friction.

Duratron[®] PAI Polyamide-imide [PAI]

With its versatile performance capabilities and proven use in a broad range of applications, Duratron[®] polyamide-imide [PAI] shapes are offered in extruded and compression moulded grades.

Main Characteristics

- Very high maximum allowable service temperature in air [250 °C continuously]
- Excellent retention of mechanical strength, stiffness and creep resistance over a wide temperature range
- Superb dimensional stability up to 250 °C
- Excellent wear & frictional behaviour [particularly Duratron[®] T4301 & T4501 PAI]
- Very good UV-resistance
- Exceptional resistance against high energy radiation [gamma- and X-rays]
- Inherent low flammability

Main Grades

Duratron[®] T4203 PAI [extruded] [PAI; yellow-ochre]

Duratron[®] T4503 PAI [compression moulded] [PAI; yellow-ochre]

Duratron® T4203 PAI offers the best toughness and impact strength of all Duratron® PAI grades. This extruded Duratron® PAI grade is very popular for precision parts in high-tech equipment. In addition, its good electrical insulating ability provides numerous possibilities in the field of electrical components. Compression moulded Duratron® T4503 PAI is similar in composition to Duratron® T4203 PAI, and is selected when larger shapes are required.

Tech Notes: As Duratron® PAI shows a relatively high moisture absorption, parts used in high temperature service or made to tight tolerances should be kept dry prior to installation. Thermal shock resulting in deformation can occur if moisture laden parts are rapidly exposed to temperatures above 200 °C.

For high temperature applications, this advanced material offers an excellent combination of mechanical performance and dimensional stability.

Duratron[®] T4301 PAI [extruded] [PAI + graphite + PTFE; black]

Duratron® T4501 PAI [compression moulded] [PAI + graphite + PTFE; black] The addition of PTFE and graphite provides higher wear resistance and lower coefficient of friction compared to the unfilled grade as well as a lower tendency to stick-slip. Duratron® T4301 PAI also offers excellent dimensional stability over a wide temperature range. This extruded Duratron® PAI grade excels in severe wear applications such as non-lubricated bearings, seals, bearing cages and reciprocating compressor parts. Compression moulded Duratron® T4501 PAI is similar in composition to Duratron® T4301 PAI, and is selected when larger shapes are required.

Duratron[®] T5530 PAI [compression moulded] [PAI-GF30; khaki-grey]

This 30 % glass fibre reinforced grade offers higher stiffness, strength and creep resistance than the Duratron® PAI grades mentioned above. It is well suited for structural applications supporting static loads for long periods of time at high temperatures. In addition, Duratron® T5530 PAI exhibits superb dimensional stability up to 250 °C making it extremely popular for precision parts in e.g. the electronical and semiconductor industries. The suitability of Duratron® T5530 PAI for sliding parts, however, is to be carefully examined since the glass fibres tend to abrade the mating surface.

Ketron[®] PEEK Polyetheretherketone [PEEK]

The Ketron[®] PEEK family of materials is based on polyetheretherketone resin. This semi-crystalline advanced material exhibits a unique combination of high mechanical properties, temperature resistance and excellent chemical resistance making it the most popular advanced plastics material.

Main Characteristics

- Very high maximum allowable service temperature in air [250 °C continuously, up to 310 °C for short periods of time]
- High mechanical strength, stiffness and creep resistance, also at elevated temperatures
- Excellent chemical and hydrolysis resistance
- · Excellent wear and frictional behaviour
- · Very good dimensional stability
- Excellent resistance to high energy radiation [gamma- and X-rays]
- Inherent low flammability and very low levels of smoke evolution during combustion
- Good electrical insulating and dielectric properties [except for Ketron[®] HPV PEEK and CA30 PEEK]

Applications

Ketron[®] PEEK is often used to replace PTFE when higher mechanical load bearing capacity, or when superior wear resistance are needed. Ketron[®] PEEK is widely selected as a replacement for metal components. Examples of components made from PEEK grades: pump components, valve seats, bearings, rollers, gears, high temperature insulators, components exposed to boiling water or steam.

Main Grades

Ketron[®] 1000 PEEK [PEEK; natural (brownishgrey) or black - available as "Food Grade", details see page 34]

Ketron[®] 1000 PEEK stock shapes are produced from virgin polyetheretherketone resin and offer the highest toughness and impact strength of all Ketron® PEEK grades. Both Ketron® 1000 PEEK natural & black can be sterilised by all conventional sterilisation methods [steam, dry heat, ethylene oxide and gamma irradiation]. Additionally, Ketron® 1000 PEEK stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ketron® 1000 PEEK stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ketron[®] HPV PEEK [PEEK + CF + PTFE + graphite; black]

The addition of carbon fibres, PTFE and graphite to virgin PEEK results in a Ketron® PEEK "bearing grade". Its excellent tribological properties [low friction, long wear and high pressure-velocity capabilities] make this grade especially suited for wear and friction applications.

Ketron[®] GF30 PEEK [PEEK + glass fibre; natural (brownish-grey)]

This 30 % glass fibre reinforced grade offers a higher stiffness and creep resistance than Ketron® 1000 PEEK and has a much better dimensional stability. This grade is very appropriate for structural applications carrying high static loads for long periods of time at elevated temperatures. The suitability of Ketron® GF30 PEEK for sliding parts, however, is to be carefully examined since the glass fibres tend to abrade the mating surface.

Ketron[®] PEEK Polyetheretherketone [PEEK]

Ketron[®] CA30 PEEK [PEEK + CF30; black]

This 30 % carbon fibre reinforced grade combines even higher stiffness, mechanical strength and creep resistance than Ketron® GF30 PEEK with an optimum wear resistance. Moreover, compared with unreinforced PEEK, the carbon fibres considerably reduce thermal expansion and provide 3.5 times higher thermal conductivity – dissipating heat from the bearing surface faster, improving bearing life and pressure-velocity capabilities.

Ketron[®] TX PEEK [PEEK + solid lubricant; blue -

available as "Food Grade", details see page 34] This member of the Ketron PEEK family has been developed especially for the food industry. Like Ketron® 1000 PEEK, this internally lubricated material has a food contact compliant composition, but offers far superior wear and frictional performance making it especially suitable for a wide variety of bearing and wear applications in the 100 to 200 °C service temperature range.

Additionally, Ketron[®] TX PEEK stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ketron[®] TX PEEK stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs. Ketron[®] VMX Food Grade PEEK [PEEK + visual, metal, and X-ray detectable additive; blue available as "Food Grade", details see page 34]

Ketron[®] VMX Food Grade Polyetheretherketone PEEK is an FDA and EU Compliant grade that offers extreme dimensional stability, and high strength and temperature resistance. Visual, metal, and x-ray detectable, Ketron[®] VMX Food Grade PEEK shapes can be easily traced by conventional metal and x-ray detection systems, allowing global food processors to safely avoid costly recalls caused by foreign contamination. Due to their superior resistance to wear and corrosion, Ketron[®] VMX Food Grade PEEK components are favored for applications in the food processing and packaging industry such as pistons, manifolds, valves, and mixing vessels.

Additionally, Ketron[®] VMX Food Grade PEEK stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ketron[®] VMX Food Grade PEEK stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ketron® CC PEEK [PEEK + carbon fibers]

This specifically developed grade is a unique engineering PEEK based material which offers a high performance profile due to its woven carbon reinforced structure. This material is manufactured by means of compression moulding. Basically the composite contains 57% Carbon fibers and 43% Impregnated PEEK Polymer pressed into layers (laminates) of 0.325 mm. Its key properties include superior mechanical strength and stiffness at elevated temperatures, outstanding friction and wear resistance, excellent performance in chemical and irradiated environments.

Tech Notes: From 150 °C onwards [above the glass transition temperature], the mechanical properties of all Ketron® PEEK grades drop off significantly and the coefficient of linear thermal expansion increases considerably. Consequently, a material like Duratron® PAI could be better suited for close tolerance parts operating under high loads at temperatures over 150 °C.

Like most reinforced materials, Ketron® GF30 PEEK, HPV PEEK, CA30 PEEK and TX PEEK exhibit a moderate toughness and impact strength. Therefore, all "internal" corners of parts made from these materials should be radiused [R > 1 mm] and edges chamfered to maximise part toughness.

Techtron[®] PPS Polyphenylene Sulfide [PPS]

The Techtron[®] PPS family – based on semicrystalline polymer polyphenylene sulfide – was developed to close the gap both in performance and price between the standard thermoplastic materials [e.g. PA, POM, PET] and the high-end advanced engineering plastics [e.g. PBI, PI, PAI, PEEK].

Main Characteristics

- Very high maximum allowable service temperature in air [220 °C continuously, up to 260 °C for short periods of time]
- High mechanical strength, stiffness and creep resistance, also at elevated temperatures
- Excellent chemical and hydrolysis resistance
- Very good dimensional stability
- Excellent wear and frictional behaviour [Techtron® HPV PPS]
- Physiologically inert [suitable for food contact]
- Excellent resistance to high energy radiation [gamma- and X-rays]
- Good UV-resistance
- · Inherent low flammability
- Good electrical insulating and dielectric properties

Grades

Techtron[®] 1000 PPS [PPS; natural (cream)]

This unfilled polyphenylene sulfide based material is ideal for structural applications in corrosive environments or as a PEEK replacement at less demanding temperatures. Very good dimensional stability [minimal moisture absorption and a low coefficient of linear thermal expansion], combined with easy machinability to close tolerances, make Techtron® 1000 PPS very well suited for precise tolerance machined components. This material is generally not used for wear applications.

Additionally, the composition of the raw materials used for the manufacture of Techtron[®] 1000 PPS stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Tech Notes: From temperature], the mechanical properties of Techtron[®] HPV PPS drop off significantly and the coefficient of linear thermal expansion increases considerably. Ketron[®] PEEK and Duratron[®] PAI may be suitable alternatives to overcome these inconveniences.

P Techtron[®] HPV PPS [PPS + solid lubricant; deep blue - available as "Food Grade", details see page 34]

As a reinforced, internally lubricated PPS grade, Techtron[®] HPV PPS demonstrates an excellent combination of properties including wear resistance, load-bearing capabilities and dimensional stability when exposed to chemicals and high temperature environments. Techtron® HPV PPS is found in applications where PA, POM, PET and other plastics fall short or where PI, PEEK and PAI are over-engineered and a more economical solution must be found. Thanks to the uniformly dispersed internal lubricant, Techtron[®] HPV PPS exhibits an excellent wear resistance and a low coefficient of friction. It overcomes the disadvantages of virgin PPS caused by a high coefficient of friction and of a glass fibre reinforced PPS which causes premature wear of the counterface in moving-part applications.

Additionally, Techtron[®] HPV PPS stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Techtron[®] HPV PPS stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs. Techtron[®] HPV PPS can be used in all kinds of industrial equipment such as industrial drying and food processing ovens [bearings, rollers], chemical process equipment [pump, valve & compressor components] and electrical insulating systems and sliding parts.

Sultron[®] PSU Polysulfone [PSU]

Sultron[®] PSU is a slightly yellow, translucent [non-optical quality] amorphous thermoplastic material, offering a combination of excellent mechanical, thermal and electrical properties. It often replaces polycarbonate whenever higher temperature resistance, improved chemical resistance or autoclavability are required.

Main Characteristics

- High maximum allowable service temperature in air [150 °C continuously]
- Good hydrolysis resistance [suitable for repeated steam sterilisation]
- High strength and stiffness over a wide temperature range
- Good dimensional stability
- Physiologically inert [suitable for food contact per FDA regulations]
- Very good resistance against high energy radiation [gamma- and X-rays]
- Good electrical insulating and dielectric properties

Applications

Sultron® PSU is commonly used in food processing equipment [milk machines, pumps, valves, filtration, plates, heat exchangers], for analytical instrumentation and all kinds of components which are subjected torepeated cleaning and sterilisation.

Additionally, the composition of the raw materials used for the manufacture of Sultron[®] PSU stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Tech Notes: Amorphous thermoplastics like Sultron® PSU are sensitive to stress cracking when in contact with polar organic solvents [e.g. ethyl alcohol]. Environments which might be completely harmless to unstressed parts may cause stress cracking with highly stressed parts [this also applies to Duratron® U1000 PEI and to a lesser extent also to Sultron® PPSU].

Duratron[®] U1000 PEI Polyetherimide [PEI]

Duratron[®] U1000 PEI is an amber translucent [non optical quality] amorphous thermoplastic material, offering high strength and heat resistance. It performs continuously to 170 °C, making it ideal for high strength / high heat applications, and also for applications requiring consistent dielectric properties over a wide frequency and temperature range.

Main Characteristics

- High maximum allowable service temperature in air [170 °C continuously]
- Very good hydrolysis resistance [suitable for repeated steam sterilisation]
- High strength and stiffness over a wide temperature range
- Inherent low flammability and low levels of smoke evolution during combustion
- · Good dimensional stability
- Physiologically inert [suitable for food contact per FDA regulations]
- Very good resistance against high energy radiation [gamma- and X-rays]
- Very good electrical insulating and dielectric properties

Applications

Duratron® U1000 PEI is extremely suitable for electrical / electronic insulators [including many semiconductor process components] and a variety of structural components requiring high strength and rigidity at elevated temperatures. Thanks to its good hydrolysis resistance, Duratron® U1000 PEI is capable of withstanding repeated autoclaving cycles.

Additionally, the composition of the raw materials used for the manufacture of Duratron[®] U1000 PEI stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Duratron[®] U2300 PEI [PEI, 30% glass-reinforced; natural]

Duratron[®] U2300 PEI is a glass-reinforced (30%) version of Duratron[®] U1000 PEI which provides even greater rigidity and improved dimensional stability while maintaining many of the useful characteristics of basic Duratron[®] U1000 PEI.

Tech Notes: Cooling liquids of the soluble oil type should not be used when machining Duratron[®] U1000 PEI since they are likely to induce environmental stress cracking. For this material, the most suitable coolants are pure water or compressed air [this also applies to Sultron[®] PPSU and Sultron[®] PPSU].

Fluorosint® Polytetrafluoroethylene [PTFE]

The Fluorosint[®] family of materials comprises several enhanced PTFE materials developed to fill the performance gaps where unfilled and low-tech, filled PTFE based polymers under perform. Each Fluorosint[®] grade was specifically developed to excel in demanding bearing and seal applications. While all of the Fluorosint[®] grades possess the chemical resistance and compliance of PTFE, each grade offers some special benefits that give the designer clear performance advantages.

Main Characteristics

- Very high maximum allowable service temperature in air [260 °C continuously]
- · Moderate mechanical strength and stiffness
- · Good dimensional stability
- Excellent chemical and hydrolysis resistance
- Low deformation under load [particularly Fluorosint® MT-01]
- Low coefficient of friction and good wear resistance
- Outstanding UV- and weather resistance
- Physiologically inert [suitable for food contact per FDA regulations]
- Inherent low flammability

Applications

High performance bearings, bushings and seals where higher loads and minimal wear are required.

Grades

Fluorosint[®] 500 [PTFE + mica; ivory]

Reinforced with a proprietary synthetic mica, this material exhibits, in addition to its inherent outstanding chemical and hydrolysis resistance, very good mechanical and tribological properties. Fluorosint® 500 has nine times greater resistance to deformation under load than unfilled PTFE. Its coefficient of linear thermal expansion approaches the expansion rate of aluminium and is 1/4 that of virgin PTFE, often eliminating fit and clearance problems. It is considerably harder than virgin PTFE, has better wear characteristics and maintains low frictional properties. Fluorosint® 500 enhanced PTFE offers an ideal combination of stability and wear resistance for sealing applications where tight dimensional control is required.

Fluorosint[®] 207 [PTFE + mica; white]

This material has a food contact compliant composition which, in combination with the good mechanical performance, dimensional stability, sliding and wear properties and inherent outstanding chemical and hydrolysis resistance of Fluorosint[®], opens numerous application possibilities in food, pharmaceutical and chemical processing industries.

Fluorosint[®] 207 lasts far longer than unfilled PTFE in wear applications and has a very low coefficient of friction. It is a preferred material for lower pressure seats and seals where virgin PTFE fails and food contact compliance may be required.

Additionally, the composition of the raw materials used for the manufacture of Fluorosint[®] 207 stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Fluorosint® Polytetrafluoroethylene [PTFE]

Fluorosint[®] HPV [PTFE + additives; tan]

FDA compliant Fluorosint® HPV is a high performance Fluorosint® bearing grade, optimized for high pressure velocity capabilities and very low wear. Fluorosint® HPV was developed for bearing applications where other, low-tech PTFE formulations exhibit premature wear or simply cannot perform. FDA compliance gives food and pharmaceutical equipment manufacturers new design options and all benefit from its excellent load bearing and wear characteristics.

The composition of the raw materials used for the manufacture of Fluorosint® HPV stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Fluorosint® MT-01 [PTFE + additives; dark grey]

Fluorosint® MT-01 is an extreme service grade developed specifically for applications where the benefits of PTFE-based materials also require strength, stiffness and stability. Fluorosint® MT-01 delivers high mechanical performance at elevated temperature and as a result is often specified in seat, seal and wear applications where extreme conditions are present.

Fluorosint® 135 [PTFE + additives; black]

Fluorosint[®] 135 offers high performance at an extremely competitive price position. It is a perfect blended material grade which provides extreme performance for seals, bearings and wear applications. Fluorosint[®] 135 is the lowest coefficient of friction material along with low deformation and provides superior performance over typical filled PTFE compounds.

Semitron[®] ESd

The Semitron[®] ESd family of static dissipative plastics is designed for applications where electrical discharge in operation is a problem. They provide a controlled bleed-off of static charges.

Tech Notes: The Semitron® ESd products are inherently dissipative and do not rely on atmospheric phenomena [e.g. humidity] to activate, nor are surface treatments used to achieve dissipation.

Main Characteristics

- · Permanently static dissipative
- Dissipate static charges [5kV] in less than 2 seconds
- No metal or graphite powder used
- Depending on the base polymer, thermal performance from 90 to 260 °C [continuous use]

Applications

There are eight Semitron[®] ESd grades servicing static dissipative needs over a broad range of temperatures and mechanical loading conditions.

The Semitron® ESd materials are commonly used in manufacturing and handling equipment of sensitive electronic components such as integrated circuits, hard disk drives and circuit boards. They are also an excellent choice for material handling applications and components in high speed electronic printing and reproducing equipment.

SEMITRON [®] ESD GRADES	SURFACE RESISTIVITY OHM/SQ.]ACC. TO ANSI/ESD STM 11.11	MAX. ALLOWABLE SERVICE TEMPERATURE IN AIR [°C] FOR SHORT PERIODS CONTINUOUSLY [*]
Semitron® ESd 225	Psi/MPa	periods continuously [*]
Semitron [®] ESd 410C	Psi/MPa	ASTM D 638
Semitron® ESd 480	Psi/MPa	ASTM D 790
Semitron® ESd 490HR	Psi/MPa	ASTM D 790
Semitron® ESd 500HR	Psi/MPa	ASTM D 695
Semitron [®] ESd 520HR	Psi/MPa	ASTM D 638
Semitron® MPR1000	Psi/MPa	ASTM D 790
Semitron [®] ESd 490HR	Psi/MPa	ASTM D 790
Semitron [®] HPV	Psi/MPa	ASTM D 695

[*] for more details, see the property list on page 45-48.

Semitron[®] ESd

Grades

Semitron® ESd 225 [static dissipative POM; beige]

Semitron[®] ESd 225 is an acetal based static dissipative material ideal for material handling operations. It is also an excellent choice for fixtures used in the manufacturing of hard disk drives or for handling inprocess silicon wafers.

Semitron[®] ESd 410C [static dissipative PEI; black]

Having an excellent mechanical performance up to 210 °C, Semitron[®] ESd 410C provides ESd solutions at higher temperatures. Additionally, Semitron[®] ESd 410C exhibits excellent dimensional stability [low coefficient of linear thermal expansion and small water absorption], ideal for handling equipment in the electrical/electronic or semiconductor industries.

Semitron® ESd 480 [static dissipative PEEK; black]

This PEEK based static dissipative material provides a dissipative range of 106 - 109 ohms/sq. Semitron[®] ESd 480 is highly dimensionally stable, making it ideal for critical test fixture applications. Its exceptional chemical resistance makes it well suited for use in wafer handling and other structural applications in wet process tools where static dissipation is important. Like all MCG Advanced Materials Division's Semitron[®] ESd materials, Semitron[®] ESd 480 is not subject to dielectric breakdown.

Semitron[®] ESd 490HR [static dissipative PEEK; black]

This is a slightly higher resistivity PEEK based material that offers similar physical properties as Semitron[®] ESd 480. Its surface resistivity is 10¹⁰ - 10¹² ohms/sq.

Semitron[®] ESd 500HR [static dissipative PTFE; white]

Reinforced with a proprietary synthetic mica, Semitron[®] ESd 500HR offers an excellent combination of low frictional properties, good dimensional stability and electrostatic dissipation. Whenever virgin PTFE causes electrical discharge problems, Semitron[®] ESd 500HR will provide a controlled bleed-off of static charges while maintaining typical PTFE-properties such as broad chemical resistance and low coefficient of friction.

Semitron[®] ESd 520HR [static dissipative PAI; khaki grey]

Semitron[®] ESd 520HR Polyamide-imide PAI electro static dissipative shapes possess the unique ability to resist dielectric breakdown at high voltages. As a result, Semitron[®] ESd 520HR PAI is the only Semitron[®] grade that maintains its performance throughout the 100V to 1000V voltage range, while offering the mechanical performance needed to excel in demanding applications. This characteristic, combined with its high strength and heat resistance, make Semitron[®] ESd 520HR PAI an ideal solution for test equipment and device handling applications within the semiconductor and electronics industry.

Semitron[®] MPR1000 [brownish]

Semitron[®] MPR1000 is a new engineering material developed for semiconductor applications and more specifically for use in vacuum chamber applications such as these found in Etch, CVD and Ion Implant. The material was developed based on three key premises:

- Longevity Increased life in plasma chambers over traditional plastics such as polyimide (up to 25x over polyimide in ozone);
- 2. Clean Low ionic metal content and low out-gassing;
- Value Lower overall cost in use compared to traditional materials used in vacuum chamber applications such as quartz, ceramics, and engineering plastics.

Semitron® HPV [static dissipative PEEK; black]

The addition of specific fillers makes this grade excellent for the use in wear and friction applications but also in applications where antistatic properties are needed.

Within the polyamides, commonly referred to as "nylons", we distinguish different types. The most important ones are: PA 6, PA 66, PA 11 and PA 12.

Main Characteristics

- High mechanical strength, stiffness, hardness and toughness
- Good fatigue resistance
- · High mechanical damping ability
- Good sliding properties
- Excellent wear resistance
- · Good electrical insulating properties
- Good resistance to high energy radiation [gamma- and X-rays]
- Good machinability

The differences in physical properties which exist between these types are mainly determined by the composition and the structure of their molecular chains.

Applications

Sleeve and slide bearings, wear pads, support and guide wheels, conveyor rollers, tension rollers, sleeves for wheels and rollers, pulleys and pulley-linings, cams, buffer blocks, hammer heads, scrapers, gear wheels, sprockets, seal-rings, feed screws, star wheels, cutting and chopping boards, insulators.

Extruded Nylon Grades

⁹ Ertalon[®] 6 SA [PA 6; natural (white) / black colour natural available as "Food Grade", details see page 34]

This material offers an optimal combination of mechanical strength, stiffness, toughness, mechanical damping properties and wear resistance. These properties, together with good electrical insulating properties and a good chemical resistance make Ertalon[®] 6 SA a "general purpose" grade for mechanical construction and maintenance.

Additionally, Ertalon® 6 SA natural stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertalon® 6 SA natural stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Frtalon® 66 SA / Nylatron® 101 [PA 66; natural (cream) / black - colour natural available as "Food Grade", details see page 34]

Material with a higher mechanical strength, stiffness, heat and wear resistance than Ertalon® 6 SA. It also has a better creep resistance but its impact strength and mechanical damping ability are reduced. Well suited for machining on automatic lathes. Please note that the Ertalon® 66 SA / Nylatron® 101 PA66 natural rods over dia. 150 mm are made from a modified polyamide 66 resin [see the property values given on page 50 under Ertalon® 66 SA-C].

Additionally, Ertalon[®] 66 SA / Nylatron[®] 101 PA66 natural stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertalon[®] 66 SA / Nylatron[®] 101 PA66 natural stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ertalon[®] 4.6 / Nylatron[®] 4.6 [PA 4.6; reddish brown]

Compared with conventional nylons, Ertalon[®] 4.6 / Nylatron[®] 4.6 PA 4.6features a better retention of stiffness and creep resistance over a wide range of temperatures as well as superior heat ageing resistance. Therefore, applications for Ertalon[®] 4.6 / Nylatron[®] 4.6 PA 4.6 are situated in the "higher temperature area" [80 – 150 °C] where stiffness, creep resistance, heat ageing resistance, fatigue strength and wear resistance of PA 6, PA 66, POM and PET fall short.

Ertalon® 66-GF30 / Nylatron® GF30 [PA 66-GF30; black]

Compared with virgin PA 66, this 30 % glass fibre reinforced nylon grade offers increased strength, stiffness, creep resistance and dimensional stability whilst retaining an excellent wear resistance. It also allows higher maximum service temperatures.

Nylatron® GS [PA 66 + MoS,; grey-black]

The addition of MoS₂ renders this material somewhat stiffer, harder and dimensionally more stable than Ertalon[®] 66 SA, but results in some loss of impact strength. The nucleating effect of the molybdenum disulphide results in an improved crystalline structure enhancing bearing and wear properties.

Nylatron® VMX Food Grade [PA 6; dark blue available as "Food Grade", details see page 34] This nylon 6 grade contains a visual, metal, and x-ray detectable additive and has been specifically tailored for use in the food processing and packaging industries where it can easily be traced by the conventional metal and x-ray detection systems installed to detect contamination of the foodstuffs [results may vary depending on the sensitivity of the metal and x-ray detection system used]. Nylatron[®] VMX Food Grade PA 6 is a material with higher wear and fatigue resistance and shows lower moisture absorption than standard PA 6. It is applied in temperature environments of up to 80 °C. Additionally, Nylatron[®] VMX Food Grade PA 6 stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Nylatron[®] VMX Food Grade PA 6 stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Nylatron® 66 SA FR [PA 66 flame retardant; black]

This grade has been developed to fulfil the requirements as set out in the test program conducted on plastic materials to measure flammability characteristics. It determines the material's tendency either to extinguish or to spread the flame once the specimen has been ignited. This program is described in UL 94 and this grade fulfils the V-0 criteria as from 1 mm thickness. The product is currently in the certification process for compliance with EN 45545-2. – a standard specifically applicable for railway applications – for fire protection on railway vehicles.

Nylatron[®] FST [PA 66 flame, smoke, toxicity retardant; natural]

Nylatron[®] FST is a specifically designed polymer for aircraft interior applications.

With its unique features it is absolutely reliable fire, smoke and toxicity (FST) retardant and withstands extreme temperatures up to 175 °C. The material is particularly suitable for any kind of application where metal parts (e. g. brackets, seal bushings, slide rails and duct seals) or high performance polymers have traditionally been specified in aircraft design. Nylatron® FST complies to FAR 25.853 a (1) (i) as from 3 mm thickness and FAR 25.853 a (1) (ii) as from 1 mm thickness. The material complies to FAR 25.853 d appendix F part V concerning the Specific Optical Smoke Density as from 3 mm thickness.

Cast Nylon Grades

Ertalon[®] 6 PLA / Nylatron[®] MC[®] 907 [PA 6; natural (ivory) / black / blue - colour natural and blue available as "Food Grade", details see page 34]

Unmodified cast nylon 6 grade exhibiting characteristics which come very close to those of Ertalon® 66 SA. It combines high strength, stiffness and hardness with good creep and wear resistance, heat ageing properties and machinability.

Additionally, Ertalon[®] 6 PLA / Nylatron[®] MC[®] 907 PA 6 natural and blue stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertalon[®] 6 PLA / Nylatron[®] MC[®] 907 PA 6 natural and blue stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ertalon® 6 XAU+ [PA 6; black]

Ertalon® 6 XAU+ is a heat stabilised cast nylon grade with a very dense and highly crystalline with conventional extruded or cast nylons, Ertalon® 6 XAU+ offers superior heat ageing performance in air [much better resistance to thermal oxidative degradation], allowing 15 - 30 °C higher service temperature. Ertalon® 6 XAU+ is particularly recommended for bearings and other mechanical parts subject to wear which are operating in air for long periods of time at temperatures over 60 °C.

Ertalon[®] LFX / Nylatron[®] LFX [PA 6 + oil; green]

This internally lubricated cast nylon 6 is selflubricating in the real meaning of the word. Ertalon® LFX / Nylatron® LFX PA 6, especially developed for unlubricated, highly loaded and slow moving parts applications, yields a considerable enlargement of the application opportunities compared to standard cast nylons. It offers a reduced coefficient of friction [up to 50 % lower], considerably increasing the pressurevelocity capabilities, and a vastly improved wear resistance [up to 10 times better].

Tech Notes: Nylons can absorb up to 9% of weight by water under high humidity or submerged in water. This results in dimensional changes and a corresponding reduction of physical property values. Proper design techniques can frequently compensate this factor.

Nylatron[®] MC 901 [PA 6; blue]

This modified cast nylon 6 grade with its distinctive blue colour exhibits higher toughness, flexibility and fatigue resistance than Ertalon[®] 6 PLA. It has proved to be an excellent material for gear wheels, racks and pinions.

Nylatron[®] GSM [PA 6 + MoS₂; grey-black]

Nylatron[®] GSM contains finely divided particles of molybdenum disulphide to enhance its bearing and wear behaviour without impairing the impact and fatigue resistance inherent to unmodified cast nylon grades. It is a very commonly used grade for gears, bearings, sprockets and sheaves.

Nylatron® NSM [PA 6 + solid lubricants; grey]

Nylatron[®] NSM is a proprietary cast nylon 6 formulation containing solid lubricant additives which grant this material self-lubricity, excellent frictional behaviour, superior wear resistance and outstanding pressurevelocity capabilities [up to 5 times higher than conventional cast nylons]. Being particularly suited for higher velocity, unlubricated moving parts applications it is the perfect complement to the oil-filled grade Ertalon[®] LFX.

Nylatron[®] SLG [PA 6 + oil; natural (ivory) / blue]

Nylatron[®] SLG is self-lubricating in the real meaning of the word. Nylatron[®] SLG has been specially developed for non-lubricated, highly loaded and slowly moving parts. Compared to standard cast nylons, it offers lower maintenance costs and longer service life.

Nylatron[®] 703 XL [PA 6 + internal lubricants; purple]

This high performance cast nylon 6 bearing grade provides an even better wear resistance than Nylatron[®] NSM, combined with superior pressure-velocity capabilities and a near zero level of "stick-slip". The elimination of stick-slip, mostly associated with chatter or squeaking, provides an extraordinary amount of motion control for high-precision applications.

Ertacetal[®] | Acetron[®] Polyacetal [POM]

The MCG Advanced Materials Division offers both homopolymer and copolymer grades of Polyacetal including an enhanced bearing grade material.

Main Characteristics

- High mechanical strength, stiffness and hardness
- Excellent resilience
- Good creep resistance
- · High impact strength, even at low temperatures
- Very good dimensional stability [low water absorption]
- · Good sliding properties and wear resistance
- · Excellent machinability
- Good electrical insulating and dielectric properties
- Physiologically inert [several grades are suitable for food contact]
- Not self-extinguishing

Applications

Gear wheels with small modulus, cams, heavily loaded bearings and rollers, bearings and gears with small clearances, valve seats, snap-fit assemblies, dimensionally stable precision parts, electrically insulating components.

Grades

Frtacetal[®] C / Acetron[®] GP POM-C [POM-C; natural (white) / black / colours - natural, blue and black available as "Food Grade", details see page 34]

Ertacetal[®] C / Acetron[®] GP POM-C is the copolymer acetal grade of MCG Advanced Materials. The acetal copolymer is more resistant against hydrolysis, strong alkalis and thermal oxidative degradation than the acetal homopolymer.

Additionally, Ertacetal[®] C / Acetron[®] GP POM-C stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertacetal[®] C / Acetron[®] GP POM-C stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs [applies to natural, blue, black and other colours].

Ertacetal[®] | Acetron[®] Polyacetal [POM]

available as "Food Grade", details see page 34] Ertacetal® C LQ is a copolymer grade which is specifically developed for its laser writability on natural (white) material. The acetal copolymer itself is more resistant against hydrolysis, strong alkalis and thermaloxidative degradation than the acetal homopolymer. Additionally, Ertacetal[®] C LQ stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertacetal® C LQ stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ertacetal® C ELS [POM-C; black]

Ertacetal[®] C ELS is Mitsubishi Chemical Advanced Materials' copolymer conductive acetal grade. This grade is specifically developed for the use in applications where you need the main benefits of POM-C in combination with a good electrical conductivity, e. g. electrical areas and explosion sensitive areas.

Acetron[®] VMX Food Grade [POM-C; blue available as "Food Grade", details see page 34]

This copolymer acetal grade, containing a visual, metal, and x-ray detectable additive, has been specifically tailored for use in the food processing and packaging industries where it can easily be traced by the conventional metal and x-ray detection systems installed to detect contamination of the foodstuffs [results may vary depending on the sensitivity of the metal and x-ray detection system used]. Acetron[®] VMX Food Grade POM-C presents good mechanical Tech Notes: When it comes to outdoor applications Ertacetal[®] is not recommended because of its poor UV-resistance.

strength, stiffness and impact strength. Additionally, Acetron[®] VMX Food Grade POM-C stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Acetron[®] VMX Food Grade POM-C stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Ertacetal[®] H / Acetron[®] H [POM-H; natural (white) / black]

Ertacetal[®] H / Acetron[®] H POM-H is the homopolymer acetal grade of MCG Advanced Materials. It offers a higher mechanical strength, stiffness, hardness and creep resistance as well as a lower thermal expansion rate and often also a better wear resistance than the acetal copolymer.

Ertacetal[®] H-TF / Acetron[®] AF Blend [POM-H + PTFE; deep brown]

Ertacetal[®] H-TF / Acetron[®] AF Blend POM-H is a DELRIN[®] AF Blend, a combination of PTFE fibres evenly dispersed in a DELRIN acetal resin. Much of the strength that is inherent in Ertacetal[®] H is retained. Some properties change due to the addition of PTFE fibre which is softer, less stiff and slipperier than virgin acetal resin. Compared with Ertacetal[®] C and H, this material offers superior sliding properties. Bearings made of Ertacetal[®] H-TF / Acetron[®] AF Blend POM-H show low friction, long wear and are essentially free of stick-slip behaviour.

Ertalyte® Polyethylene Terephthalate [PET]

MCG Advanced Materials markets its crystalline thermoplastic polyester stock shapes under the Ertalyte[®] [virgin grade] and Ertalyte[®] TX [bearing grade] trade names.

Main Characteristics

- High mechanical strength, stiffness and hardness
- Very good creep resistance
- · Low and constant coefficient of friction
- Excellent wear resistance [comparable with or even better than nylon grades]
- Moderate impact strength
- Very good dimensional stability [better than polyacetal]
- Excellent stain resistance
- Better resistance to acids than nylon or polyacetal
- Good electrical insulating properties
- Physiologically inert [suitable for food contact]
- Good resistance to high energy radiation [gamma and X-rays]

Applications

Heavily loaded bearings [bushings, thrust washers, guides, etc.], dimensionally stable parts for mechanisms of precision [bushings, slideways, gears, rollers, pump components, etc.], insulating components for electrical engineering.

Grades

Ertalyte[®] [PET; natural (white) / black - available as "Food Grade", details see page 34]

The specific properties of this virgin crystalline PET make it especially suitable for the manufacture of mechanical precision parts which have to sustain high loads and/or are subject to wear.

Tech Notes: Since Ertalyte[®] tends to be rather notch and impact sensitive, all "internal" corners should be radiused [R > 1 mm] and to avoid chipping the edges during turning, boring or milling, chamfered edges are advantageous, providing a smoother transition between the cutting tool and the plastics work.

Additionally, Ertalyte[®] stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertalyte[®] stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Frtalyte® TX [PET + solid lubricant; pale grey available as "Food Grade", details see page 34]

Ertalyte[®] TX is a polyethylene terephthalate compound incorporating a uniformly dispersed solid lubricant. Its specific formulation makes it a premium internally lubricated bearing grade. Ertalyte® TX not only has got an outstanding wear resistance, but offers in comparison with Ertalyte® an even lower coefficient of friction as well as higher pressure-velocity capabilities. Additionally, Ertalyte® TX stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of Ertalyte® TX stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Altron[™] PC Polycarbonate [PC]

MCG Advanced Materials is marketing non-UVstabilized polycarbonate stock shapes under the trade name Altron™ PC. It is a natural, "nonoptical" industrial quality [clear, translucent]. Additionally, the composition of the raw materials used for the manufacture of Altron[™] PC stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Main Characteristics

- High mechanical strength
- · Good creep resistance
- Very high impact strength, even at low temperatures
- Stiffness retention over a wide range of temperatures
- Very good dimensional stability [very low water absorption and low CLTE]
- Natural colour [clear, translucent]
- Good electrical insulating and dielectric properties
- Physiologically inert [suitable for food contact per FDA regulations]

Applications

Components for precision engineering, safety glazing, insulating parts for electrical engineering, components for medical and pharmaceutical devices.

Tech Notes: Altron[™] PC stock shapes show an "as extruded" surface which is not optically clear. Finished parts can be both mechanically and vapour polished to improve optical clarity. Caution: during machining, do not use water-soluble coolants but preferably pure water or compressed air.

Flextron[™] TPE Thermoplastic Elastomer Nylatron[®] RIM Polyamide [PA 6]

Flextron[™] TPE products are a group of copolymers which consist of materials with both thermoplastic and elastomeric properties. They are outstanding in applications where superior performance over conventional elastomers is required.

Main Characteristics of Flextron[™] TPE

- Good chemical resistance
- Good temperature resistance (both high and low temperatures)
- Constant mechanical behaviour over wide temperature ranges
- Flexibility (Fatigue)
- High energy absorption

Nylatron[®] RIM is an elastomer reinforced Nylon thermoplastic for industrial Reaction Injection Molding (RIM) process. The stiffness/toughness combination of Nylon-6 and elastomer gives excellent impact resistance and repetitive load (fatigue) endurance.

Main Characteristics of Nylatron[®] RIM

- Highly improved impact resistance, even at low temperatures
- Between 10% and 40% rubber added
- · High wear and abrasion resistance
- Extreme fatigue resistance
- Lower tensile and compressive strength
- Generally not available as stock shape but only as cast finished part

Applications

Elastomer bumpers, Engine mounts, Protectors Rollers

Elastomer Solutions

In applications where rubber materials are too unstable and soft, and age too fast, and where engineering plastics are too hard and brittle, the Flextron[™] TPE and Nylatron[®] RIM materials can be the solution. The MCG Advanced Materials Division offers a wide range of thermoplastic elastomers that enable engineers to achieve high design flexibility.

Flame Retardant Products

To prevent the risk of ignition and diffusion of flames in enclosed spaces such as skyscrapers, boats, airplanes and trains, fire resistant materials like concrete, steel or ceramics are used. Once ignited, however, the materials in the environment determine how quickly the flames spread, the level of smoke generation, and the time available to control the fire - or the time period to leave the scene. To increase the safety level and broaden the application opportunities of the use of plastics, MCG Advanced Materials has developed flame retardant plastic materials. These are defined by various testing methods and standards, which usually determine the selfextinguishing properties under certain conditions. Flame retardant properties can be achieved through specific formulation of the plastic compounds.

Main Characteristics

- · Flame, smoke and toxicity retardant
- · Balanced property profile
- Beneficial cost-performance-ratio
- Lightweight (60% weight saving compared to aluminum)
- · Very low noise development
- · Wear-friendly to mating surfaces

Applications

- · Cable holders, clamps, channels
- Connectors
- Seating equipment
- Brackets
- Seal bushings
- Slide rails
- Duct seals

Standard methods for testing polymer flammability vary among countries. All materials used in enclosed spaces and interiors must comply with various national and international regulations. MCG Advanced Materials' portfolio of flame-retardant polymers complies with the most important global industrial standards.

Flame Retardant Products

Flammability, Smoke, Toxicity (FST characteristics) and Heat Release

	FLAMM	ABILITY				
	SMALL BURNER TEST VERTIKAL (60S)	SMALL BURNER TEST VERTIKAL (12S)	SMOKE DENSITY TEST	SMOKE TOXICITY TEST	HEAT RELEASE TEST	APPROVAL FOR RAILWAY INDUSTRY
Airbus test method	AITM2.002A	AITM2.002B	AITM2.0007 A (flaming mode)	AITM3.0005	AITM2.0006	
Boeing test method	BSS 7230: F1	BSS 7230: F2	BSS 7238 (flaming mode)	BSS 7239	BSS 7332	
FAR25.853 ref	FAR25.853 Appendix F part I	FAR25.853 Appendix F part I	FAR25.853 Appendix F part V	not mentioned	FAR25.853 Appendix F part IV	
Other						EN 45545 (in testing) NFPA 130
Nylatron [®] FST	\checkmark	\checkmark	✓	✓	-	-
Nylatron [®] 66 SA FR	-	\checkmark	-	-	-	\checkmark
Sultron® PPSU Black	-	\checkmark	\checkmark	\checkmark	-	-
Techtron [®] 1000 PPS	\checkmark	-	\checkmark	-	-	-
Duratron [®] U1000 PEI	\checkmark	-	\checkmark	\checkmark	-	\checkmark
Duratron [®] U23000 PEI	\checkmark	-	1	1	-	-
Ketron [®] 1000 PEEK	\checkmark	-	1	1	-	\checkmark
Ketron [®] HPV PEEK	\checkmark	-	1	1	1	-
Ketron [®] GF30 PEEK	\checkmark	-	1	1	1	-
TIVAR [®] Burnguard	-	-	-	-	-	\checkmark

TIVAR[®] | Ultra High Molecular Weight Polyethylene [UHMW-PE]

The TIVAR[®] product family is an extensive range of virgin, partially reprocessed, coloured or

Main Characteristics

- · Very good wear and abrasion resistance
- High impact strength, even at low temperatures
- Excellent chemical resistance
- Low density compared to other thermoplastics [≈ 1 g/cm3]
- · Low coefficient of friction
- Excellent release properties
- Very low water absorption
- Moderate mechanical strength, stiffness and creep resistance
- Very good electrical insulating and dielectric properties [except static dissipative grades]
- · Excellent machinability
- Physiologically inert [several grades are suitable for food contact]
- Good resistance to high energy radiation [gamma- and X-rays]
- Not self-extinguishing [except TIVAR[®] Burnguard]

Applications

Gears, bearings, wear plates, support-, tension- and deflecting rollers, rope pulleys, chain sprockets, bumpers, scraper blades, piston rings and packings, seals, valves, hammer-heads, conveyor screws, star wheels and bends, corner tracks, parcel chutes, pumps, filter plates, pickers, beater caps, linings for bunkers, silos, chutes and funnels for bulk materials, punching plates, cutting and chopping boards. modified Ultra High Molecular Weight Polyethylene stock shapes, manufactured by compression moulding or ram-extrusion.

Standard Grades

TIVAR[®] 1000 [UHMW-PE; natural (white), green, black, colours - partially available as "Food Grade", details see page 34]

TIVAR[®] 1000 exhibits a very well balanced property profile. It combines a very good wear and abrasion resistance with outstanding impact strength, even at temperatures below -200 °C.

Additionally, various colours of TIVAR® 1000 stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011.

TIVAR[®] 1000 antistatic [UHMW-PE + carbon black; black - available as "Food Grade", details see page 34]

By incorporating an effective carbon black grade, TIVAR[®] 1000 antistatic offers the electrostatic dissipative properties often required for PE-UHMW components operating at high line speeds and conveying rates, maintaining the inherent key characteristics of UHMW-PE.

Additionally, TIVAR[®] 1000 antistatic stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011.

TIVAR[®] ECO green [UHMW-PE; green]

This grade, partially composed of reprocessed PE-UHMW material, has an overall lower property level than the virgin TIVAR® 1000 and a lower cost. Compared to virgin PE 500, however, it has a much better impact strength and wear resistance. TIVAR® ECO green shows a favourable price-performance ratio for applications in many kinds of industries with less demanding requirements.

TIVAR[®] ECO black antistatic / TIVAR[®] ECO ESD [UHMW-PE; black]

This grade, partially composed of reprocessed PE-UHMW material, has a slightly lower property level than the virgin TIVAR® 1000. Compared to virgin PE 500, however, it has a much better impact strength and wear resistance. The incorporation of an effective carbon black grade offers electrostatic dissipative properties to this material. TIVAR® ECO black antistatic / TIVAR® ECO ESD UHMW-PE shows a favourable price-performance ratio for applications in many kinds of industries with less demanding requirements.

Speciality Grades

The MCG Advanced Materials Division focuses on innovation by modification of TIVAR® 1000 standard materials in order to meet specific market requirements. The TIVAR® speciality grades offer improved sliding and wear properties, static dissipative characteristics, enhanced release properties or other improved characteristics.

TIVAR[®] DrySlide [UHMW-PE + internal lubricant + other additives; black]

Thanks to the lubricant built into a UHMW-PE matrix with higher molecular weight, TIVAR® DrySlide offers a lower coefficient of friction and enhanced wear and abrasion resistance than TIVAR® 1000. The additives used also make this material static dissipative and considerably improve UV-resistance.

TIVAR[®] HPV [UHMW-PE + internal lubricant + other additives; blue - available as "Food Grade"*, details see page 34]

Thanks to the lubricant built into a UHMW-PE matrix with higher molecular weight, TIVAR[®] DrySlide offers

a lower coefficient of friction and enhanced wear and abrasion resistance than TIVAR[®] 1000. The additives used also make this material static dissipative and considerably improve UV-resistance.

TIVAR® TECH [UHMW-PE + MoS2; grey-black] This UHMW-PE grade with extremely high degree of polymerization contains molybdenum disulphide, resulting in a material with improved wear resistance and sliding properties over TIVAR® 1000.

TIVAR® DS [UHMW-PE + additives; yellow available as "Food Grade"*, details see page 34] TIVAR® DS is a modified UHMW-PE with extremely high molecular weight. The latter in combination with a particular manufacturing process result in a UHMW-PE grade with superior wear and abrasion resistance over TIVAR® 1000.

TIVAR® Cestidur [UHMW-PE + additives; grey available as "Food Grade"*, details see page 34] TIVAR® Cestidur is a modified UHMW-PE with extremely high molecular weight. The latter in combination with a particular manufacturing process result in a UHMW-PE grade with superior wear and abrasion resistance over TIVAR® 1000.

TIVAR[®] Ceram P [UHMW-PE + micro glass beads + other additives; yellow-green]

TIVAR[®] Ceram P is a wear improved UHMW-PE material with incorporated micro glass beads, specifically developed for use in the dewatering zone of paper machinery equipped with plastic wires and manufacturing paper with high abrasive filler content.

* Additionally, these TIVAR® specialty grade stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of these TIVAR® specialty grade stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

TIVAR[®] SuperPlus [UHMW-PE + specific additives; grey]

TIVAR[®] SuperPlus is a wear optimized, partially crosslinked UHMW-PE material with extremely high degree of polymerization for use in most demanding applications and environments. When used for drainage elements in paper machinery, this TIVAR[®] grade generally also offers better wear and sliding performance than TIVAR[®] Ceram P.

TIVAR[®] H.O.T. [UHMW-PE + specific additives; bright white - available as "Food Grade" * / **, details see page 34]

TIVAR[®] H.O.T. [Higher Operating Temperature] is formulated to maintain inherent UHMW-PE key properties over an extended service temperature range, in this way considerably increasing part life in low load bearing applications up to temperatures as high as 125 °C. Special additives reduce the oxidation rate of the material at higher temperatures thereby slowing down material degradation and extending wear-life. TIVAR[®] H.O.T. also features a food contact compliant composition.

TIVAR[®] BurnGuard / TIVAR[®] 88 W/BurnGuard [UHMW-PE + flame retardant + other additives; black with silver coloured spots]

TIVAR[®] BurnGuard / TIVAR[®] 88 W/BurnGuard UHMW-PE is a UHMW-PE grade containing a very effective non-halogenated flame retardant. Specifically developed to improve the poor flammability behaviour of straight forward virgin polyethylene, it meets the requirements of UL 94 V-0 as of 6 mm thickness and is self-extinguishing. The additives used also render this material static dissipative and considerably improve UV-resistance.

TIVAR[®] CleanStat [UHMW-PE + specific additives; black - available as "Food Grade"* / **, details see page 34]

TIVAR[®] CleanStat is a UHMW-PE grade for use in food processing and pharmaceutical industries. It exhibits static dissipative properties and has a food contact compliant composition.

TIVAR[®] CleanStat White [UHMW-PE + specific additives; white - suitable for food contact per FDA** regulations]

TIVAR[®] CleanStat White offers the electrostatic dissipative properties often required for UHMW-PE components operating at high line speeds and conveying rates. TIVAR[®] CleanStat White with

permanent ESd properties and white colour has specifically been developed for the food and pharma industry. The composition of the raw materials used for the manufacture of TIVAR® CleanStat White stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

TIVAR® 1000 ASTL [UHMW-PE + specific additives; black - available as "Food Grade", details see page 34]

TIVAR® 1000 ASTL, based on a UHMW-PE grade with extremely high molecular weight, has been specifically developed for tough anti-abrasion applications. TIVAR® 1000 ASTL shows a higher wear and abrasion resistance and a lower surface resistivity than TIVAR® 1000 antistatic. The additives used also render this material static dissipative and highly UV-resistant.

Y TIVAR® 1000 EC [UHMW-PE + specific additives; black - available as "Food Grade"* / **, details see page 34]

TIVAR[®] 1000 EC is a UHMW-PE grade containing specific additives rendering this material a lower surface resistivity than TIVAR[®] 1000 antistatic and also TIVAR[®] ASTL, improving electrical conductivity and UVresistance.

* Additionally, these TIVAR[®] specialty grade stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011.

** The composition of the raw materials used for the manufacture of these TIVAR® specialty grade stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

VMX Food Grade [UHMW-PE + visual, metal, and x-ray detectable additive; blue - available as "Food Grade", details see page 34]

This PE-UHMW grade with extremely high degree of polymerization contains a visual, metal, and x-ray detectable additive which does hardly affect the inherent UHMW-PE key properties. TIVAR® VMX Food Grade UHMW-PE presents excellent toughness and impact strength, an even improved wear and abrasion resistance when compared with TIVAR® 1000, and it also features a food contact compliant composition. TIVAR® VMX Food Grade UHMW-PE has been specifically tailored for use in the food processing and packaging industries where it can easily be traced by the conventional metal detection systems installed to detect contamination of the foodstuffs [results may vary depending on the sensitivity of the visual, metal, and x-ray detection system used].

Additionally, TIVAR[®] VMX Food Grade UHMW-PE stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011. The composition of the raw materials used for the manufacture of TIVAR[®] VMX Food Grade UHMW-PE stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

TIVAR[®] Oil Filled [UHMW-PE + oil; grey; suitable for food contact per FDA regulations]

TIVAR[®] Oil Filled is a self-lubricating UHMW-PE material in the real meaning of the word. Next to an enhanced wear resistance, the incorporated and evenly dispersed oil renders this material a considerable lower coefficient of friction than TIVAR[®] 1000. In conveying equipment, it yields a significant reduction of the required driving force and, in addition, noise reduction. Additionally, the composition of the raw materials used for the manufacture of TIVAR[®] Oil Filled stock shapes complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

TIVAR[®] Cestigreen [UHMW-PE + specific additives; green]

This permanently static dissipative material with extremely high molecular weight has been specifically developed as an alternative for standard static dissipative UHMW-PE grades and more particularly for those applications where a green and non-sloughing [without graphite or carbon powder] static dissipative UHMW-PE is required.

Borotron[®] UH015 / UH030 / UH050 [UHMW-PE + boron based additive; natural (off-white)] Borotron[®] HM015 / HM030 / HM050 [HMW-PE + boron based additive; natural (off-white)]

Borotron[®] UH and Borotron[®] HM are boron loaded [U] HMW-PE grades, specifically developed for neutron shielding purposes in nuclear installations. The high hydrogen content of [U]HMW-PE makes it very suitable for slowing down fast neutrons to lower energy thermal [slow] neutrons, which are then absorbed by the added boron compound. Whereas both HMW-PE and UHMW-PE are suitable for neutron shielding, UHMW-PE is often preferred because of its better deformation behaviour at high temperatures and its superior impact strength and wear resistance. Several grades are available with boron loads of 1.5, 3 and 5 % [015 / 030 / 050].

PE 500 High Molecular Weight Polyethylene [HMW-PE]

PE 500 [HMW-PE; natural (white), green, black, colours - available as "Food Grade", details see page 34]

This grade exhibits a good combination of stiffness, toughness, mechanical damping ability with wear and abrasion resistance and can easily be welded. In less demanding applications with respect to wear and impact resistance, PE 500 may present an economical alternative for the TIVAR® standard grades. PE 500 is a versatile polyethylene grade used mainly in the food industry [meat and fish processing] but it is also put to use in all kinds of mechanical, chemical and electrical

applications. Additionally, PE 500 stock shapes are also available in our Food Grade programme, which means that they can be supplied with a declaration of compliance, confirming they comply with the requirements mentioned in the European Regulation (EU) 10/2011 (colour black is not compliant). The composition of the raw materials used for the manufacture of PE 500 stock shapes also complies with the regulations of the United States of America [FDA] for plastic materials and articles intended to come into contact with foodstuffs.

Polyethylene Selection Table

FEATURES PRODUCTS	MOL. WEIGHT (1)	COLOURS	ADDITIVES	SLIDING PROPERTIES (COEFF. OF FRICTION)	WEAR RESISTANCE (PLASTICS PIN ON STEEL DISK	ABRASION RESISTANCE (SAND- SLURRY)	UV- RESISTANCE	ESD- PROPERTIES	FOOD CONTACT COMPLIANT COMPOSITION [EU & US FDA]
PE 500	0.5	natural, green, black, colours	none or pigments	good	poor	poor	moderate	no	natural: yes (EU & USA) (2): yes (EU)
TIVAR [®] 1000	5	natural, green, black, colours	none or pigments	good	good	good	moderate	no	natural: yes (EU & USA) (2): yes (EU)
TIVAR® 1000 antistatic	5	black	SDA	good	good	good	good	yes	yes (EU)
TIVAR [®] ECO green	4.5	green	pigments	good	moderate	moderate	moderate	no	no
TIVAR® ECO black antistatic / TIVAR® ECO ESD	4.5	black	pigments	good	moderate	moderate	moderate	yes	no
TIVAR [®] DrySlide	9	black	IL + SDA	very good	very good	very good	good	yes	no
TIVAR® TECH	9	grey-black	MoS ₂	good	excellent	very good	moderate	no	no
TIVAR® DS	9	yellow	pigments	good	very good	very good	moderate	no	yes (EU & USA)
TIVAR [®] Cestidur	9	grey	pigments	good	very good	very good	moderate	no	yes (EU & USA)
TIVAR [®] Ceram P	9	yellow-green	GB+ pigments	good	excellent	excellent	moderate	no	yes (EU & USA)
TIVAR [®] SuperPlus	9	grey	IL + pigments + other	good	excellent	excellent	moderate	no	no
TIVAR® H.O.T.	9	bright-white	HS + pigments	good	very good	excellent	moderate	no	yes (EU & USA)
TIVAR® BurnGuard / TIVAR® 88 W/BurnGuard	5	black	FR	good	good	moderate	good	yes	no
TIVAR [®] CleanStat	5	black	SDA	good	good	very good	good	yes	yes (EU & USA)
TIVAR® CleanStat White	5	white	SDA	good	good	very good	good	yes	yes (USA)
TIVAR® 1000 ASTL	9	black	SDA	good	very good	very good	very good	yes	yes (EU)
TIVAR® 1000 EC	5	black	SDA	good	good	good	very good	yes	yes
TIVAR® VMX Food Grade	9	blue	MDA	good	very good	excellent	moderate	no	yes (EU & USA)
Borotron [®] UH	5	natural	B ₂ O ₃	good	good	moderate	moderate	no	no
Borotron® HM	0,5	natural	B ₂ O ₃	good	poor	poor	moderate	no	no
TIVAR® Oil Filled	9	grey	oil + pigments	excellent	very good	very good	moderate	no	yes (USA)
TIVAR [®] Cestigreen	9	green	SDA + pigments	good	very good	very good	moderate	yes	no
TIVAR® HPV	> 6	blue	IL	good	excellent*	good	moderate	no	yes (EU & USA)

(1) average molecular weight 106 g/mol

(2) black and standard colours

Abbreviations: SDA = static dissipative additive; GB = glass beads; IL = internal lubricant(s); HS = heat stabilizer; FR = flame retardant

Food Contact Compliance Status

STOCK SHAPES	BASE POLYMER	FOOD GRADE (1)	FDA COMPLIANT (2)
Ketron [®] 1000 Food Grade PEEK natural	PEEK	+	+
Ketron [®] 1000 Food Grade PEEK black	PEEK	+	+
Ketron [®] TX Food Grade PEEK blue	PEEK	+	+
Ketron® VMX Food Grade PEEK blue	PEEK	+	+
Techtron [®] 1000 Food Grade PPS natural	PPS	NT	+
Techtron® HPV Food Grade PPS blue	PPS	+	+
Sultron [®] Food Grade PPSU black	PPSU	+	+
Sultron® Food Grade PSU natural	PSU	NT	+
Duratron [®] U1000 PEI Food Grade natural	PEI	NT	+
Fluorosint [®] 207 Food Grade PTFE white	PTFE	-	+
Fluorosint® HPV Food Grade PTFE tan	PTFE	NT	+
Ertacetal [®] C LQ Food Grade POM-C natural	POM-C	+	+
Ertalon [®] 6 SA Food Grade PA6 natural	PA 6	+	+
Ertalon® 66 SA Food Grade PA66 natural	PA 66	+	+
Ertalon® 6 PLA Food Grade PA6 natural / blue	PA 6	+/+	+/+
Nylatron [®] VMX Food Grade PA6 blue	PA 6	+	+
Ertacetal [®] C Food Grade POM-C natural / blue / black	POM-C	+/+/+	+/+/+
Ertacetal [®] C Food Grade POM-C - other colors	POM-C	NT	+
Acetron [®] VMX Food Grade POM-C blue	POM-C	+	+
Ertalyte® Food Grade PET natural / black / blue	PET	+ / + / +	+ / + / +
Ertalyte® TX Food Grade PET grey	PET	+	+
TIVAR [®] 1000 Food Grade UHMW-PE natural / blue 7020 / green 3010 / green 3060 / red 2030 / yellow 6030	PE-UHMW	+/+/+/+/+/+	+/+/+/+/+/+
TIVAR [®] 1000 antistatic Food Grade UHMW-PE black	PE-UHMW	+	-
TIVAR® DS Food Grade UHMW-PE yellow	PE-UHMW	+	+
TIVAR® Cestidur Food Grade UHMW-PE grey	PE-UHMW	+	+
TIVAR® H.O.T. Food Grade UHMW-PE white	PE-UHMW	+	+
TIVAR [®] CleanStat Food Grade UHMW-PE black	PE-UHMW	+	+
TIVAR® 1000 ASTL Food Grade UHMW-PE black	PE-UHMW	+	-
TIVAR® EC Food Grade UHMW-PE black	PE-UHMW	+	-
TIVAR® VMX Food Grade UHMW-PE blue	PE-UHMW	+	+
TIVAR® OilFilled Food Grade UHMW-PE grey	PE-UHMW	NT	+
TIVAR [®] CleanStat White Food Grade UHMW-PE	PE-UHMW	-	+
TIVAR® HPV Food Grade UHMW-PE blue	PE-UHMW	+	+
PE 500 Food Grade HMW-PE natural / blue 7020 / green 3060 / red 2025 / yellow 6030	PE-HMW	+ / + / IT / + / +	+/+/+/+/+

+ Complies with the requirements of the regulations.

- Does not comply with the requirements of the regulations.

 Food Grade: MCG Advanced Materials' European "Food Grade" designated products comply with the requirements mentioned in the Regulation [EC] No 1935/2004 and the Regulation (EU) 10/2011. Further our "Food Grade" products are manufactured according to Good Manufacturing Practice [GMP] as set out in Regulation [EC] No 2023/2006.

- NT Has not been tested according to the requirements of ther egulations.
- IT Tests according to the requirements of the regulations are on-going.

[2] This column gives the compliance of the raw materials used for the manufacture of the MCG Advanced Materials stock shapes with with respect to their composition as set out in the United States of America (FDA) for plastic materials and articles intended to come into contact with foodstuffs.

Lining Solutions

MCG Advanced Materials' lining solutions are are designed to perform with powdery, liquid, gaseous or bulky goods and media. Regardless whether in chemical, power, transport, mining, semiconductor or other industries, they fulfill manifold functions in the handling of sticky bulk materials of various natures.

Key for a successful lining application is an appropriate choice of the best suited lining material and the optimal way of application. MCG Advanced Materials offers the full technical support service around the lining products and their application, even reaching to design works and complete turn-key solutions for the TIVAR[®] line of products.

Engineered Plastic Lining Solutions to Drive Flow & Protection

MCG Advanced Materials offers engineered plastic lining solutions to make bulk handling processes safer, faster and more efficient.

System TIVAR[®] Engineering

System TIVAR[®] Engineering Solutions for Bulk Material Flow Solutions

The Advanced Materials Division of MCG offers materials and fully engineered lining solutions to provide mass flow by preventing blockages, buildups and funnel flow, to boost efficiency of bulk material handling processes.

Features and Benefits:

- Non-stick, non-wearing surface promotes flow, ensures a reliable and safe operation and prevents costly downtime, maintenance and repair
- Custom designed, prefabricated kits fit even challenging geometries and reduce on-site installation time and cost
- Global turnkey project management experience ensures seamless and efficient integration in workflow
- System TIVAR[®] Engineering includes on-site analysis, liner design, pre-fabrication of kits, optional
- supervision or turnkey installation, anywhere around the globe, from small to large scale.

Materials

TIVAR® 88 Product Overview

- Promotes reliable, steady bulk material flowprofile.
- · Abrasion-, chemical- and corrosion-resistant
- No moisture absorption
- Reduces or eliminates arching, ratholing and erratic flow

Recognized worldwide as the premium lining material for bulk material handling, TIVAR® 88 is noted for its performance in promoting bulk solids fl ow of cohesive or non-free fl owing materials due to its low surface friction. TIVAR® 88 liners are the perfect solution when you need to reduce or eliminate arching, ratholing anderratic material flow challenges in bins, bunkers, hoppers and chutes, railcars, etc. For applications in outdoor environments that receive high exposure to ultra violet rays, TIVAR® 88 UVResistant prevents premature degradation of material. In dusty or volatile environments, TIVAR® 88 ESd protects against the build-up of electrical charges.

TIVAR® 88-2

TIVAR® 88-2 can be fabricated - and welded - to provide a solution for nearly any application, whether it's a seamless drop-in liner, a framed-in liner or even a replacement liner.

TIVAR[®] 88 with BurnGuard[™]

For applications in which the TIVAR® 88® liner might be exposed to combustion, TIVAR® 88 with BurnGuardTM has flame retardant properties. When the source of the combustion is removed, TIVAR® 88 with BurnGuardTM self extinguishes and experiences no further impact. TIVAR® 88 with BurnGuardTM meets MSHA 1C-112/1 for underground mining and has a UL94 V-0 Flammability Rating.

TIVAR[®] CleanStat

is a UHMW-PE grade for use in food processing and pharmaceutical industries. It exhibits static dissipative properties and is available as a "Food Grade" [see page 34].

TIVAR® H.O.T.

[Higher Operating Temperature] is formulated to maintain inherent UHMW-PE key properties over an extended service temperature range, in this way considerably increasing part life in low load bearing applications up to temperatures as high as 125 °C. Special additives reduce the oxidation rate of the material at higher temperatures thereby slowing down material degradation

and extending wear-life. Additionally, TIVAR[®] H.O.T. stock shapes are also available in our "Food Grade" programme [see page 34].

QuickSilver[®] Truck Liners

QuickSilver[®] Truck Liners for quick release and protection

QuickSilver[®] is an extremely tough, super-slick-polymer giving safer (and better) release at much lower tipping angles and allowing operators to run more loads per day.

Features and Benefits

- Better non-stick properties of the body
- Weight savings over steel liners
- Complete and constant unloading
- No freezing of bulk
- Safe tipping, even on uneven ground
- No separation and purification means necessary
- High impact strength
- Maintenance-free

Examples of bulk materials

- Stone, rubble, gravel, crushed stone
- Earth, sand, (sewage) sludge, loam
- Topsoil, clay
- Coal, limestone, gypsum
- · Salts, ores, ashes
- · Grain and fertilizers

TIVAR[®] DrySlide Parcel Handling

TIVAR[®] DrySlide promotes a consistent flow throughout the chute system

TIVAR[®] DrySlide is a PE-UHMW material with optimized sliding and wear properties. Due to its antistatic properties and extremely low coefficient of friction TIVAR[®] DrySlide is used to promote a safe, steady flow throughout the chute system.

TIVAR[®] DrySlide has a built-in dry lubricant which eliminates the need for silicone sprays, graphite and waxes and reduces ongoing maintenance costs within the hub.

Benefits

- Extremely low coefficient of friction reduces sticking and parcel hang-ups
- Packages containing magnets do not stick to chutes
- Not affected by humidity; no more jams on your line
- Reduced sorting times as there is no need to polish or lubricate the chutes
- · Increased speed and productivity
- Material is anti-static and UV stabilized for outdoor use
- Minimize health & safety issues from blocked chutes

Features

TIVAR[®] DrySlide is an effective lining material, available to suit any style of chute - straight, bends or spiral. It reduces blockages within the system and promotes consistent parcel and package flow. TIVAR[®] DrySlide chute linings are available as complete turnkey solutions, from design to installation in new or retro-fit. This excellent wear material is superior with both light or heavier packages in dry, dusty or dirty environments.

Individual design and turnkey installation solutions for any new or retro-fit parcel chute.

AE Phys (india	P ical Properties cative values)	lest method	Linis Dife	under the second second	Duratrono	Duration Distrone	Duration 14203 Pallo	Duration 14301,010	Duration 135300n®
1	Colour	-	-	black	natural (chestnut)	grey-black	yellow- ochre	black	khaki-grey
2	Density	ISO 1183-1	g/cm³	1.30	1,38	1.46	1.41	1.45	1.61
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	60 / 112	66 / 128	46 / 100	29 / 55	26 / 48	25 / 50
5	in water of 23 °C (1)	ISO 62	%	0.74 / 1.37	0.73 / 1.41	0.48 / 1.04	0.35 / 0.67	0.30 / 0.55	0.26 / 0.52
6	- at saturation in air of 23 °C / 50 % RH	-	%	7.5	2.2	1.3	2.5	1.9	1.7
7	- at saturation in water of 23 °C	-	%	14	4	3	4.4	3.8	3.2
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	NA	NA	NA	NA	NA	NA
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	415	365	365	280	280	280
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.40	0.22	0.39	0.26	0.54	0.36
11	Coefficient of linear thermal expansion:								
12	 average value between 23 and 100 °C 	-	m/(m.K)	25 x 10⁻ ⁶	40 x 10 ⁻⁶	36 x 10⁻ ⁶	40 x 10 ⁻⁶	35 x 10⁻ ⁶	35 x 10⁻ ⁶
13	 average value between 23 and 150 °C 	-	m/(m.K)	25 x 10⁻ ⁶	42 x 10⁻ ⁶	38 x 10 ⁻⁶	40 x 10 ⁻⁶	35 x 10⁻ ⁶	35 x 10⁻ ⁶
14	- average value above 150 °C	-	m/(m.K)	35 x 10⁻ ⁶	52 x 10⁻ ⁶	47 x 10 ⁻⁶	50 x 10 ⁻⁶	40 x 10 ⁻⁶	40 x 10 ⁻⁶
15	Temperature of deflection under load:								
16	- method A: 1.8 MPa	ISO 75-1/-2	°C	425	355	365	280	280	280
17	Max. allowable service temperature in air :								
18	- for short periods (4)	-	°C	500	450	450	270	270	270
19	- continuously: for min. 20,000 h (5)	-	°C	310	240	240	250	250	250
20	Min. service temperature (6)	-	°C	-50	-50	-20	-50	-20	-20
21	Flammability (7):								
22	- "Oxygen Index"	ISO 4589- 1/-2	%	58	51	47	45	44	50
23	- according to UL 94 (1.5 / 3 mm thickness)	-	-	V-0 / V-0	V-0 / V-0	V-0 / V-0	V-0 / V-0	V-0 / V-0	V-0 / V-0

AE	ЪР	/	/		1891	100		/	/
Phys (indio	ical Properties cative values)	lest method	Linits 200	Duration.	Durations C	Duratione Diotsche	Duration®	Duratron 14307,000	^{Al [76]} Duratrone ⁷⁵⁵³⁰ PAI
		ME	CHANIC	AL PROPER	TIES AT 23	°C (8)	, 	/	/
24	Tension test (9):								
25	 tensile stress at yield / tensile stress at break (10) 	ISO 527- 1/-2	MPa	NYP / 130	NYP / 115	NYP / 67	150 / -	NYP / 110	NYP / 125
26	- tensile strength (10)	ISO 527- 1/-2	MPa	130	115	67	150	110	125
27	- tensile strain at yield (10)	ISO 527- 1/-2	%	NYP	NYP	NYP	9	NYP	NYP
28	- tensile strain at break (10)	ISO 527- 1/-2	%	3	4	2	20	5	3
29	- tensile modulus of elasticity (11)	ISO 527- 1/-2	MPa	6000	3700	4900	4200	5500	6400
30	Compression test (12):								
31	- compressive stress at 1 / 2 / 5 % nominal strain (11)	ISO 604	MPa	58 / 118 / 280	35 / 69 / 145	44 / 81 / 145	34 / 67 / 135	39 / 72 / 130	55 / 104 / 190
32	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	20	65	10	no break	45	30
33	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	2.5	4.5	1.5	15	4	3.5
34	Ball indentation hardness (15)	ISO 2039-1	N/mm²	375	235	225	200	200	275
35	Rockwell hardness (14)	ISO 2039-2	-	E 120	E 95 (M 120)	E 84 (M 115)	E 80 (M 120)	M 106 (E 70)	E 85 (M125)
			ELECT	RICAL PRO	PERTIES AT	23 °C		1	
36	Electric strength (15)	IEC 60243-1	kV/mm	28	28	13	24	-	28
37	Volume resistivity	IEC 60093	Ohm. cm	> 1014	> 1014	-	> 1014	> 1013	> 1014
38	Surface resistivity	ANSI/ESD STM 11.11	Ohm/ sq.	> 1013	> 1013	< 104	> 1013	> 1013	> 1013
39	Relative permittivity ϵ_r :								
40	- at 100 Hz	IEC 60250	-	3.3	3.4	-	4.2	6.0	4.4
41	- at 1 MHz	IEC 60250	-	3.2	3.2	5.5	3.9	5.4	4.2
42	Dielectric dissipation factor tan δ:								
43	- at 100 Hz	IEC 60250	-	0.001	0.006	-	0.026	0.037	0.022
44	- at 1 MHz	IEC 60250	-	-	0.005	0.007	0.031	0.042	0.050
45	Comparative tracking index (CTI)	IEC 60112	-	-	125	-	175	175	175

AE	² P	/	/	/ /	te l	te l	×.	EE.	4
Phys (indi	ical Properties cative values)	netto.	So,	Dn® ho	2000 Pr	Due Charles	one C43	000 1. 	X PEE
		lest,	, in the second second	ton	to the second	ton	tert	to the second	Active Contraction
1	Colour	-	-	natural (brownish grey) / black	black	natural (brownish grey)	black	blue	dark grey
2	Density	ISO 1183-1	g/cm³	1.31	1.45	1.51	1.40	1.39	1.39
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	5 / 10	4/9	5 / 10	4/9	4/9	4 / 9
5	in water of 23 °C (1)	ISO 62	%	0.06 / 0.12	0.05 / 0.11	0.05 / 0.10	0.05 / 0.11	0.05 / 0.10	0.05 / 0.11
6	- at saturation in air of 23 °C / 50 % RH	-	%	0.20	0.16	0.16	0.16	0.18	0.16
7	 at saturation in water of 23 °C 	-	%	0.45	0.35	0.35	0.35	0.40	0.35
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	340	340	340	340	340	340
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.25	0.78	0.43	0.92	0.25	0.25
11	Coefficient of linear thermal expansion:								
12	- average value between 23 and 100 °C	-	m/(m.K)	50 x 10 ⁻⁶	35 x 10⁻ ⁶	30 x 10 ⁻⁶	25 x 10 ⁻⁶	55 x 10⁻ ⁶	51 x 10 ⁻⁶
13	- average value between 23 and 150 °C	-	m/(m.K)	55 x 10 ⁻⁶	40 x 10 ⁻⁶	30 x 10 ⁻⁶	25 x 10 ⁻⁶	60 x 10 ⁻⁶	55 x 10 ⁻⁶
14	- average value above 150 °C	-	m/(m.K)	130 x 10⁻ ⁶	85 x 10⁻ ⁶	65 x 10 ⁻⁶	25 x 10 ⁻⁶	140 x 10⁻ ⁶	131 x 10 ⁻⁶
15	Temperature of deflection under load:								
16	- method A: 1.8 MPa	ISO 75-1/-2	°C	160	195	230	260	155	-
17	Max. allowable service temperature in air :								
18	- for short periods (4)	-	°C	310	310	310	310	310	310
19	- continuously: for min. 20,000 h (5)	-	°C	250	250	250	250	250	250
20	Min. service temperature (6)	-	°C	-50	-20	-20	-20	-20	-20
21	Flammability (7):								
22	- "Oxygen Index"	ISO 4589- 1/-2	%	35	43	40	40	40	40
23	- according to UL 94 (1.5 / 3 mm thickness)	-	-	V-0 / V-0	V-0 / V-0	V-0 / V-0	V-0 / V-0	V-0 / V-0	- / V-0

AF	2P	/	/	/ /	EEK	EF	LE LE	EFF	5000 d
Phys (indio	ical Properties cative values)	est method	Inits Cos	etrons ton	etron ^e Ho.	ettons GE	erton Caso	etrone JY.	etrone PER
		/ ~ МЕ	CHANIC	AL PROPER	TIES AT 23	۲ ℃ (8)		~	~ ~ 0
24	Tension test (9):								
25	 tensile stress at yield / tensile stress at break (10) 	ISO 527- 1/-2	MPa	115/-	NYP / 78	80 / -	NYP / 144	90 / -	114 / -
26	- tensile strength (10)	ISO 527- 1/-2	MPa	115	78	80	144	90	114
27	- tensile strain at yield (10)	ISO 527- 1/-2	%	5	NYP	3.5	NYP	5	4.4
28	- tensile strain at break (10)	ISO 527- 1/-2	%	17	3	4.5	3.5	6	12
29	- tensile modulus of elasticity (11)	ISO 527- 1/-2	MPa	4300	5900	7000	9200	3750	4100
30	Compression test (12):								
31	- compressive stress at 1 / 2 / 5 % nominal strain (11)	ISO 604	MPa	38 / 75 / 140	46 / 80 / 120	54 / 103 / 155	69 / 125 / 170	31 / 61 / 120	41 / 81 / 142
32	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	no break	25	25	50	30	50
33	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	3.5	3	3	5	3	3.4
34	Ball indentation hardness (15)	ISO 2039-1	N/mm²	210	215	250	310	195	277
35	Rockwell hardness (14)	ISO 2039-2	-	M 105	M 85	M 100	M 102	M 97	M 108
			ELECT	RICAL PRO	PERTIES AT	23 °C			
36	Electric strength (15)	IEC 60243-1	kV/mm	24	-	24	-	22	-
37	Volume resistivity	IEC 60093	Ohm. cm	> 1014	-	> 1014	< 105	> 1014	-
38	Surface resistivity	ANSI/ESD STM 11.11	Ohm/ sq.	> 1013	-	> 1013	< 10 ⁵	> 10 ¹³ > 10 ¹³	-
39	Relative permittivity ϵ_r :								
40	- at 100 Hz	IEC 60250	-	3.2	-	3.2	-	3.2	-
41	- at 1 MHz	IEC 60250	-	3.2	-	3.6	-	3.2	-
42	Dielectric dissipation factor tan δ :								
43	- at 100 Hz	IEC 60250	-	0.001	-	0.001	-	0.001	-
44	- at 1 MHz	IEC 60250	-	0.002	-	0.002	-	0.002	-
45	Comparative tracking index (CTI)	IEC 60112	-	150	-	175	-	150	-

Physical Properties (indicative values)

1	Colour	-	-	black	natural (cream)	deep blue	natural (yellow, translucent)	natural (amber, translucent)	ivory
2	Density	ISO 1183-1	g/cm³	1.53	1.35	1.42	1.24	1.27	2.32
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	-	1/2	1/2	19 / 38	16 / 34	- / -
5	in water of 23 °C (1)	ISO 62	%	-	0.01 / 0.02	0.01 / 0.02	0.24 / 0.48	0.19 / 0.40	- / -
6	- at saturation in air of 23 °C / 50 % RH	-	%	-	0.03	0.05	0.30	0.70	< 0.1
7	 at saturation in water of 23 °C 	-	%	-	0.10	0.20	0.80	1.30	1.5 - 2.5
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	343	280	280	NA	NA	327
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	190	215	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.5	0.30	0.30	0.26	0.24	0.77
11	Coefficient of linear thermal expansion:								
12	 average value between 23 and 100 °C 	-	m/(m.K)	5 x 10 ⁻⁵	60 x 10 ⁻⁶	50 x 10 ⁻⁶	55 x 10⁻ ⁶	50 x 10 ⁻⁶	50 x 10 ⁻⁶
13	 average value between 23 and 150 °C 	-	m/(m.K)	-	80 x 10 ⁻⁶	60 x 10 ⁻⁶	55 x 10 ⁻⁶	50 x 10 ⁻⁶	55 x 10 ⁻⁶
14	- average value above 150 °C	-	m/(m.K)	10 x 10 ⁻⁵	145 x 10 ⁻⁶	100 x 10 ⁻⁶	70 x 10 ⁻⁶	60 x 10 ⁻⁶	85 x 10 -6
15	Temperature of deflection under load:								
16	- method A: 1.8 MPa	ISO 75-1/-2	°C	-	115	115	170	195	130
17	Max. allowable service temperature in air :								
18	- for short periods (4)	-	°C	-	260	260	180	200	280
19	- continuously: for min. 20,000 h (5)	-	°C	-	220	220	150	170	260
20	Min. service temperature (6)	-	°C	-	-30	-20	-50	-50	-20
21	Flammability (7):								
22	- "Oxygen Index"	ISO 4589- 1/-2	%	-	44	44	30	47	≥ 95
23	- according to UL 94 (1.5 / 3 mm thickness)	-	-	-	V-0 / V-0	V-0 / V-0	HB / HB	V-0 / V-0	V-0 / V-0

Techtone 1000 pps

teron® Configuration

< rest methods

Units

Techtone Hou Pos

Sulfron® SU

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m. NA: not applicable NYP: there is no yield point

D_{III-aff} O₁₀ O₁₀ D₁₂

Fluorosines 500

AE	P Incl Branautica				E EF	oo pos	South		1000 PEI
indic	cative values)	lest method	Luik,	Ketron. Co	Techtron,	Techtrone L	n.	Duratton.	Fluorosinte.
		ME	CHANIC	AL PROPER	TIES AT 23	°C (8)	/	/	
24	Tension test (9):								
25	 tensile stress at yield / tensile stress at break (10) 	ISO 527- 1/-2	MPa	NYP	102 / -	NYP / 78	88 / -	129 / -	7 / -
26	- tensile strength (10)	ISO 527- 1/-2	MPa	680	102	78	88	129	7
27	- tensile strain at yield (10)	ISO 527- 1/-2	%	-	3.5	NYP	5	7	5
28	- tensile strain at break (10)	ISO 527- 1/-2	%	20	12	3.5	10	13	15
29	- tensile modulus of elasticity (11)	ISO 527- 1/-2	MPa	55000	4000	4000	2850	3500	1750
30	Compression test (12):								
31	- compressive stress at 1 / 2 / 5 % nominal strain (11)	ISO 604	MPa	89 / 175 / 418	39 / 77 / 122	33 / 65 / 105	25 / 49 / 101	31 / 61 / 137	12 / 19 / 25
32	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	65	no break	25	no break	no break	8
33	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	3.5	2	4	3.5	3.5	4.5
34	Ball indentation hardness (15)	ISO 2039-1	N/mm²	-	205	160	115	165	60
35	Rockwell hardness (14)	ISO 2039-2	-	M 114	M 100	M 82	M 89	M 115	R 55
			ELECT	RICAL PRO	PERTIES AT	23 °C			
36	Electric strength (15)	IEC 60243-1	kV/mm	-	18	24	30	27	11
37	Volume resistivity	IEC 60093	Ohm. cm	-	> 1014	> 1014	> 1014	> 1014	> 1013
38	Surface resistivity	ANSI/ESD STM 11.11	Ohm/ sq.	≤ 10 ³	> 1013	> 1013	> 1013	> 1013	> 1013
39	Relative permittivity ϵ_r :								
40	- at 100 Hz	IEC 60250	-	-	3.0	3.3	3.0	3.0	-
41	- at 1 MHz	IEC 60250	-	-	3.0	3.3	3.0	3.0	2.85
42	Dielectric dissipation factor tan δ :								
43	- at 100 Hz	IEC 60250	-	-	0.002	0.003	0.001	0.002	-
44	- at 1 MHz	IEC 60250	-	-	0.002	0.003	0.003	0.002	0.008
45	Comparative tracking index (CTI)	IEC 60112	-	-	125	100	150	175	-

AF Phys (indi	SP sical Properties cative values)	lest methy.	Units Uds	Fluorosines	Fluorosines	Fluorosines	Fluorossine .	Semitone	550 225 Semitrone 550 4255
1	Colour	-	-	white	black	tan	dark grey	beige	black
2	Density	ISO 1183-1	g/cm³	2.30	1.89	2.06	2.27	1.33	1.41
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	- / -	-	10 / 20	- / -	392 / 705	-
5	in water of 23 °C (1)	ISO 62	%	- / -	-	0.07 / 0.15	- / -	5/9	-
6	- at saturation in air of 23 °C / 50 % RH	-	%	< 0.1	-	0.1 - 0.2	-	0.8	0.60
7	 at saturation in water of 23 °C 	-	%	1 - 2	-	0.5 - 1	1.5 - 2.5	10	1.10
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	327	330	327	327	165	NA
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	215
10	Thermal conductivity at 23 °C	-	W/ (K.m)	-	-	-	-	-	0.35
11	Coefficient of linear thermal expansion:								
12	 average value between 23 and 100 °C 	-	m/(m.K)	85 x 10 ⁻⁶	-	75 x 10 ⁻⁶	60 x 10 ⁻⁶	150 x 10 ⁻⁶	40 x 10 ⁻⁶
13	 average value between 23 and 150 °C 	-	m/(m.K)	90 x 10 ⁻⁶	-	80 x 10 ⁻⁶	65 x 10 ⁻⁶	-	40 x 10 ⁻⁶
14	- average value above 150 °C	-	m/(m.K)	155 x 10⁻ ⁶	-	135 x 10⁻ ⁶	100 x 10 ⁻⁶	-	45 x 10 ⁻⁶
15	Temperature of deflection under load:								
16	- method A: 1.8 MPa	ISO 75-1/-2	°C	100	-	80	95	-	200
17	Max. allowable service temperature in air :								
18	- for short periods (4)	-	°C	280	-	280	300	140	200
19	- continuously: for min. 20,000 h (5)	-	°C	260	260	260	260	90	170
20	Min. service temperature (6)	-	°C	-50	-	-50	-20	-50	-20
21	Flammability (7):								
22	- "Oxygen Index"	ISO 4589- 1/-2	%	≥ 95	NT	≥ 95	≥ 95	< 20	47
23	- according to UL 94 (1.5 / 3 mm thickness)	-	-	V-0 / V-0	V-0	V-0 / V-0	V-0 / V-0	HB / HB	V-0 / V-0

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m. NA: not applicable NYP: there is no yield point

AF Phys (india	CP ical Properties cative values)	lest method	⁰⁰⁶	Fluorosine.	-207 Filiocosine	¹³⁵	Filoorosine A	Sentiroy.	^{ESQ225} Semitrone ESQ ⁴⁷⁰ C
		ME	CHANIC	AL PROPER	RTIES AT 23	°C (8)			
24	Tension test (9):								
25	 tensile stress at yield / tensile stress at break (10) 	ISO 527- 1/-2	MPa	10/-	11 / -	10/-	14 / -	NYP / 38	NYP / 62
26	- tensile strength (10)	ISO 527- 1/-2	MPa	10	11	10	14	38	62
27	- tensile strain at yield (10)	ISO 527- 1/-2	%	4	3	6	6	NYP	NYP
28	- tensile strain at break (10)	ISO 527- 1/-2	%	> 50	3.1	> 50	20	15	2
29	- tensile modulus of elasticity (11)	ISO 527- 1/-2	MPa	1450	1230	1200	1900	1500	5850
30	Compression test (12):								
31	- compressive stress at 1 / 2 / 5 % nominal strain (11)	ISO 604	MPa	10.5 / 15 / 20	19 / 25 / 30 / 32	10 / 14.5 / 19	11 / 17 / 29	14 / 25 / 38	44 / 76 / 114
32	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	30	5.4	55	20	no break	20
33	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	7.5	3.5	12	4	8	4
34	Ball indentation hardness (15)	ISO 2039-1	N/mm²	40	65	45	55	70	-
35	Rockwell hardness (14)	ISO 2039-2	-	R 50	R 67	R 45	R 74	R 106	M 115
			ELECTR	ICAL PROPE	RTIES AT 23	3 °C	1	1	
36	Electric strength (15)	IEC 60243-1	kV/mm	8	-	-	-	-	-
37	Volume resistivity	IEC 60093	Ohm. cm	> 1013	-	-	-	10 ⁹ - 10 ¹¹	10 ⁴ - 10 ⁶
38	Surface resistivity	ANSI/ESD STM 11.11	Ohm/ sq.	> 1013	< 10 ³	> 1013	< 105	10 ⁹ - 10 ¹¹	10 ⁴ - 10 ⁶
39	Relative permittivity ϵ_r :								
40	- at 100 Hz	IEC 60250	-	-	-	-	-	-	-
41	- at 1 MHz	IEC 60250	-	2.65	-	-	-	4.3	3.3
42	Dielectric dissipation factor tan δ:								
43	- at 100 Hz	IEC 60250	-	-	-	-	-	-	-
44	- at 1 MHz	IEC 60250	-	0.008	-	-	-	0.036	0.002
45	Comparative tracking index (CTI)	IEC 60112	-	-	-	-	-	-	-

AE Phys (indi	SP sical Properties cative values)	lest method	Chrise Cos	Semitons	^{ESQ 480} Semitrons,	Semitron® Sec.	Semitron® E.	Semitrone Ec	Semiton® Mog 1000
1	Colour	-	-	black	black	black	white	khaki grey	brownish
2	Density	ISO 1183-1	g/cm³	1.46	1.45	1.50	2.30	1.58	1.47
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	- / -	4 / 9	- / -	- / -	56 / 110	- / -
5	in water of 23 °C (1)	ISO 62	%	0.18 / -	0.05 / 0.11	0.18/-	- / -	0.60 / 1.18	0.28 / -
6	- at saturation in air of 23 °C / 50 % RH	-	%	-	0.16	-	< 0.1	2.6	-
7	- at saturation in water of 23 °C	-	%	1.65	0.35	1.65	1 - 2	4.6	3.4
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	344	340	342	327	NA	NA
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	NA	-	NA	-	280	277
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.34	0.78	-	-	0.34	0.50
11	Coefficient of linear thermal expansion:								
12	- average value between 23 and 100 °C	-	m/ (m.K)	37 x 10⁻ ⁶	35 x 10⁻ ⁶	34 x 10 ⁻⁶	85 x 10⁻ ⁶	35 x 10⁻ ⁶	29 x 10 ⁻⁶
13	- average value between 23 and 150 °C	-	m/ (m.K)	40 x 10 ⁻⁶	40 x 10 ⁻⁶	36 x 10 ⁻⁶	90 x 10 ⁻⁶	35 x 10⁻ ⁶	30 x 10 ⁻⁶
14	- average value above 150 °C	-	m/ (m.K)	76 x 10 ⁻⁶	85 x 10 ⁻⁶	63 x 10 ⁻⁶	155 x 10 ⁻⁶	40 x 10 ⁻⁶	36 x 10 ⁻⁶
15	Temperature of deflection under load:								
16	- method A: 1.8 MPa	ISO 75-1/-2	°C	-	195	-	100	280	278
17	Max. allowable service temperature in air :								
18	- for short periods (4)	-	°C	310	310	310	280	270	-
19	- continuously: for min. 20,000 h (5)	-	°C	250	250	250	260	250	260
20	Min. service temperature (6)	-	°C	-20	-20	-20	-50	-20	-
21	Flammability (7):								
22	- "Oxygen Index"	ISO 4589- 1/-2	%	-	43	-	≥ 95	48	-
23	- according to UL 94 (1.5 / 3 mm thickness)	-	-	- / V-0	V-0 / V-0	V-0 / -	V-0 / V-0	V-0 / V-0	- / V-0

AE Phys (india	CP ical Properties cative values)	lest method	^{Units}	Semirone .	Semitone,	Semitrone Esc.	Semitrone Ec	Semitrone Ec	Semitron® Map 1000
		ME	CHANIC	AL PROPER	TIES AT 23	°C (8)			
24	Tension test (9):								
25	 tensile stress at yield / tensile stress at break (10) 	ISO 527- 1/-2	MPa	NYP / 55	NYP / 57	NYP / 48	10 / -	NYP / 83	NYP / 99
26	- tensile strength (10)	ISO 527- 1/-2	MPa	56	57	48	10	83	99
27	- tensile strain at yield (10)	ISO 527- 1/-2	%	NYP	NYP	NYP	4	NYP	NYP
28	- tensile strain at break (10)	ISO 527- 1/-2	%	1	3	1	> 50	3	3.5
29	 tensile modulus of elasticity (11) 	ISO 527- 1/-2	MPa	5900	4900	6350	1450	5500	6050
30	Compression test (12):								
31	- compressive stress at 1 / 2 / 5 % nominal strain (11)	ISO 604	MPa	42 / 83 / 141	46 / 80 / 120	49 / 91 / 146	10.5 / 15 / 20	42 / 80 / 145	47 / 79 / 130
32	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	7	25	3.5	30	20	62
33	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	1	3	1	7.5	4	5
34	Ball indentation hardness (15)	ISO 2039-1	N/mm²	272	214	274	40	250	240
35	Rockwell hardness (14)	ISO 2039-2	-	M 103	M 90	M 105	R 50	M 110 (E73)	M 102
			ELECTR	ICAL PROPE	RTIES AT 2	3 °C			
36	Electric strength (15)	IEC 60243-1	kV/mm	-	-	-	-	-	-
37	Volume resistivity	IEC 60093	Ohm. cm	-	-	-	10 ¹⁰ - 10 ¹²	10 ¹⁰ - 10 ¹²	-
38	Surface resistivity	ANSI/ESD STM 11.11	Ohm/ sq.	10 ⁶ - 10 ⁹	10 ⁶ - 10 ⁹	10 ¹⁰ - 10 ¹²	10 ¹⁰ - 10 ¹²	10 ¹⁰ -10 ¹²	> 10 ¹³
39	Relative permittivity ϵ_r :								
40	- at 100 Hz	IEC 60250	-	-	-	-	3.1	5.8	-
41	- at 1 MHz	IEC 60250	-	-	-	-	-	-	-
42	Dielectric dissipation factor tan δ :								
43	- at 100 Hz	IEC 60250	-	-	-	-	-	-	-
44	- at 1 MHz	IEC 60250	-	-	-	-	0.075	0.18	-
45	Comparative tracking index (CTI)	IEC 60112	-	-	-	-	-	-	-

Advanced Engineering Plastic Stock Shapes

- (1) According to method 1 of ISO 62 and done on discs Ø 50 mm x 3 mm.
- (2) The figures given for these properties are for the most part derived from raw material supplier data and other publications.
- (3) Values for this property are only given here for amorphous materials and for materials that do not show a melting temperature (PBI & PI).
- (4) Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material.
- (5) Temperature resistance over a period of min. 20,000 hours. After this period of time, there is a decrease in tensile strength measured at 23 °C of about 50 % as compared with the original value.

The temperature values given here are thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note, however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.

- (6) Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected to impact. The values given here are based on unfavourable impact conditions and may consequently not be considered as being the absolute practical limits.
- (7) These estimated ratings, derived from raw material supplier data and other publications, are not intended to reflect hazards presented by the materials under actual fire conditions. There are no 'UL File Numbers' available for the Advanced Engineering Plastic stock shapes.
- (8) Most of the figures given for the mechanical properties of the extruded materials are average values of tests run on <u>dry</u> test specimens machined out of rod Ø 40 - 60 mm. Except for the hardness tests, the test specimens were then taken from an area mid between centre and outside diameter, with their length in longitudinal direction of the rod (parallel to the extrusion direction).
- (9) Test specimens: Type 1 B
- (10) Test speed: 5 or 50 mm/min [chosen acc. to ISO 10350-1 as a function of the ductile behaviour of the material (tough or brittle); all materials showing a tensile strain at break ≥ 10% were tested at 50 mm/min].
- (11) Test speed: 1 mm/min
- (12) Test specimens: cylinders \emptyset 8 mm x 16 mm
- (13) Pendulum used: 4 J
- (14) Measured on 10 mm thick test specimens (discs), mid between centre and outside diameter.
- (15) Electrode configuration: Ø 25 mm / Ø 75 mm coaxial cylinders; in transformer oil according to IEC 60296; 1 mm thick test specimens. Please note that the electric strength of Sultron™ R PPSU black can be considerably lower than the figures listed in the table which refer to <u>natural</u> material.
- (16) It has to be noted that the property values of compression moulded Duratron® T4503 PAI, resp. Duratron® T4501 PAI stock shapes can significantly differ from those given in this table for extruded Duratron® T4203 PAI, resp. Duratron® T4301 PAI stock shapes. They have to be considered on an individual shape and dimension related basis. Please consult us.
- This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product
 properties of <u>dry</u> material. However, they are not guaranteed and they should not be used to establish material specification limits nor used alone as the basis of
 design.

It has to be noted that several of the products listed in this table are fibre reinforced and/or filled, and hence show an anisotropic behaviour (properties differ when measured parallel and perpendicular to the extrusion or compression direction).

As a result of our internal continuous improvement programmes, of availability and gathering of new and/or additional technical data, of increasing knowledge and experience, as well as of changing market requirements and revised internationally recognised material/test standards, Mitsubishi Chemical Advanced Materials is extending and updating its literature and technical information on a continuous basis. We therefore invite and recommend our customers to consult our website for the latest and up to date information on our materials.

GE	P	/	,			/	0	/	0
Phys (indi	ical Properties cative values)	Cost methy	Soo Soo	Eriajone	Erialone of	Eridone 66	Ertalone 4.6	Ertadone 6.	Vulations GS
1	Colour	-	-	natural (whi- te)/ black	natural (cream)/ black	natural (white)	reddish brown	black	grey-black
2	Density	ISO 1183-1	g/cm³	1.14	1.14	1.14	1.19	1.29	1.15
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	86 / 168	40 / 76	65 / 120	90 / 180	30 / 56	46 / 85
5	in water of 23 °C (1)	ISO 62	%	1.28 / 2.50	0.60 / 1.13	0.97 / 1.79	1.30 / 2.60	0.39 / 0.74	0.68 / 1.25
6	- at saturation in air of 23 °C / 50 % RH	-	%	2.6	2.4	2.5	2.8	1.7	2.3
7	 at saturation in water of 23 °C 	-	%	9	8	8.5	9.5	5.5	7.8
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	220	260	240	290	260	260
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.28	0.28	0.28	0.30	0.30	0.29
11	Coefficient of linear thermal expansion:								
12	 average value between 23 and 60 °C 	-	m/(m.K)	90 x 10 ⁻⁶	80 x 10 ⁻⁶	85 x 10⁻	80 x 10 ⁻⁶	50 x 10⁻	80 x 10 ⁻⁶
13	 average value between 23 and 100 °C 	-	m/(m.K)	105 x 10 ⁻⁶	95 x 10⁻ ⁶	100 x 10 ⁻⁶	90 x 10 ⁻⁶	60 x 10⁻ ⁶	90 x 10 ⁻⁶
14	Temperature of deflection under load:		m/(m.K)						
15	- method A: 1.8 MPa +	ISO 75-1/-2	°C	70	85	75	160	150	85
16	Max. allowable service temperature in air :								
17	- for short periods (4)	-		160	180	170	200	200	180
18	- continuously: for 5,000 / 20,000 h (5)	-	°C	85/70	95/80	90/75	150/130	120/110	95/80
19	Min. service temperature (6)	-	°C	-40	-30	-30	-40	-20	-20
20	Flammability (7):	-	°C						
21	- "Oxygen Index"	ISO 4589- 1/-2	%	25	26	24	24	-	26
22	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB / HB	HB / HB	HB / HB	HB / HB	HB / HB	HB / HB

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m. NA: not applicable NYP: there is no yield point

GE	Р	/	/	/ /	/	/	с /	/	00
Phys	ical Properties	a de la de	§		N	500	4.0 St	9. 6. 9. 6.	
(inal	cative values)	St met	, și	talon.	talon.	talon.	talon. Ilaitro	talon® Viate	uo uo un
		بر MECH			4 FS AT 23 %	4 (8)	4	4 2	125
23	Tension test (9):								
24	- tensile stress at yield /	ISO 527-	MPa	80 / -	90 / -	86 / -	105 / -	NYP / 85	93 / -
25	tensile stress at break (10)	+ 1/-2 ISO 527-	MPa	45 / -	55 / -	50 / -	55 / -	-	55 / -
26	- tensile strength (10)	+ ISO 527-	MPa	80	93	86	105	85	95
27	- tensile strain at yield (10)	+ ISO 527-	%	4	5	5	18	NYP	5
28	- tensile strain at break (10)	+ ISO 527-	%	> 50	50	> 50	25	5	20
29		H+ ISO 527-	%	> 100	> 100	> 100	> 50	-	> 50
30	- tensile modulus of	ISO 527-	MPa	3300	3550	3350	3400	5000	3600
31		++ ISO 527-	MPa	1425	1700	1475	1350	2700	1725
32	Compression test (12):	17 2							
33	- compressive stress at 1 / 2 / 5 % nominal strain (11)	+ ISO 604	MPa	31 / 59 / 87	32 / 62 / 100	31 / 60 /	31 / 60 /	43 / 77 /	32 / 62 / 100
34	Charpy impact strength - unnotched (13)	ISO 179- + 1/1eU	kJ/m²	no break	no break	no break	no break	50	no break
35	Charpy impact strength - notched	ISO 179- + 1/1eA	kJ/m²	5.5	4.5	5	8	6	4
36	Ball indentation hardness (15)	+ ISO 2039-1	N/mm ²	150	160	155	165	165	165
37	Rockwell hardness (14)	+ ISO 2039-2	-	M 85	M 88	M 87	M 92	M 76	M 88
		EL	ECTRICA	L PROPER	TIES AT 23 °	c			
38	Electric strength (15)	+ IEC 60243-1	kV/mm	25	27	26	25	27	26
39		++ IEC 60243-1	kV/mm	16	18	17	15	18	17
40	Volume resistivity	+ IEC 60093	Ohm. cm	> 1014	> 1014	> 1014	> 1014	> 1014	> 1014
41		++ IEC 60093	Ohm. cm	> 1012	> 1012	> 10 ¹²	> 1012	> 10 ¹²	> 1012
42	Surface resistivity	+ IEC 60093	Ohm	> 1013	> 1013	> 10 ¹³	> 10 ¹³	> 10 ¹³	> 1013
43		++ IEC 60093	Ohm	> 1012	> 1012	> 1012	> 1012	> 10 ¹²	> 1012
44	Relative permittivity ε_r :								
45	- at 100 Hz	+ IEC 60250	-	3.9	3.8	3.8	3.8	3.9	3.8
46		++ IEC 60250	-	7.4	7.4	7.4	7.4	6.9	7.4
47	- at 1 MHz	+ IEC 60250	-	3.3	3.3	3.3	3.4	3.6	3.3
48		++ IEC 60250	-	3.8	3.8	3.8	3.8	3.9	3.8
49	Dielectric dissipation factor tan δ:								
50	- at 100 Hz	+ IEC 60250	-	0.019	0.013	0.013	0.009	0.012	0.013
51		++ IEC 60250	-	0.13	0.13	0.13	0.13	0.19	0.13
52	- at 1 MHz	+ IEC 60250	-	0.021	0.020	0.020	0.019	0.014	0.020
53		++ IEC 60250	-	0.06	0.06	0.06	0.06	0.04	0.06
	0								
54	Comparative tracking index (CTI)	+ IEC 60112	V	600	600	600	400	475	600

GE Phys (indi	CP sical Properties cative values)	lest methy	Unis 205	Wighton Food of the	*06 7 10/1410 06.54 P.010	(11) (11) (12) (12) (12) (12) (12) (12)	Ertalone 6 pt	Ertahone,	Etglone Lex
1	Colour	-	-	dark blue	black	natural	natural (ivory)/ black	black	green
2	Density	ISO 1183-1	g/cm³	1.21	1.16	1.14	1.15	1.15	1.135
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	60 / 118	-	0.53 / 1.03	44 / 83	47 / 89	44 / 83
5	in water of 23 °C (1)	ISO 62	%	0.78/1.53	-	-	0.65 / 1.22	0.69 / 1.31	0.66 / 1.24
6	- at saturation in air of 23 °C / 50 % RH	-	%	2.5	-	-	2.2	2.2	2
7	 at saturation in water of 23 °C 	-	%	6.9	-	7.4	6.5	6.5	6.3
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	220	264	260	215	215	215
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.28	-	0.28	0.29	0.29	0.28
11	Coefficient of linear thermal expansion:								
12	 average value between 23 and 60 °C 	-	m/(m.K)	85 x 10 ⁻⁶	80 x 10 ⁻⁶	80 x 10 ⁻⁶	80 x 10 ⁻⁶	80 x 10⁻ ⁶	80 x 10 ⁻⁶
13	 average value between 23 and 100 °C 	-	m/(m.K)	100 x 10 ⁻⁶	-	95 x 10⁻	90 x 10⁻ ⁶	90 x 10⁻ ⁶	90 x 10 ⁻⁶
14	Temperature of deflection under load:		m/(m.K)						
15	- method A: 1.8 MPa	ISO 75-1/-2	°C	85	100	85	80	80	75
16	Max. allowable service temperature in air :								
17	- for short periods (4)	-		160	-	180	170	180	165
18	- continuously: for 5,000 / 20,000 h (5)	-	°C	85/70	-	95/80	105/90	120/105	105/90
19	Min. service temperature (6)	-	°C	-25	-	-30	-30	-30	-20
20	Flammability (7):	-	°C						
21	- "Oxygen Index"	ISO 4589- 1/-2	%	25	-	-	25	25	-
22	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB/HB	V-0 (1 mm thickness)	V2	HB / HB	HB / HB	HB / HB

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m. NA: not applicable NYP: there is no yield point

GE	P		/					°0>	
Phys (indio	ical Properties cative values)	St methoc.	\$3 \$1	lattone VIA.	1906 - 1 16 24 F.	(LI) HILL	talone 6 PL	alone A.	talon® LFL
		۸ ⁶⁷	\$	× 4°	****	127 -	42	44	4.2
		MECH	ANICAL	PROPERTI	ES AT 23 °C	C (8)			
23	Tension test (9):	100 507							
24	tensile stress at break (10) +	1/-2	MPa	87 / -	79 / -	90 / -	86 / -	84 / -	72 / -
25	++	ISO 527- 1/-2	MPa	50 / -	-	-	55 / -	55 / -	45 / -
26	- tensile strength (10) +	ISO 527- 1/-2	MPa	87	79	90	88	86	73
27	- tensile strain at yield (10) +	ISO 527- 1/-2	%	4	6.6	6.6	5	5	5
28	- tensile strain at break (10) +	ISO 527- 1/-2	%	25	9	15	25	25	25
29	++	ISO 527- 1/-2	%	> 50	-	-	> 50	> 50	> 50
30	- tensile modulus of elasticity (11) +	ISO 527- 1/-2	MPa	4000	3900	3500	3600	3500	3000
31	++	ISO 527- 1/-2	MPa	1800	-	-	1750	1700	1450
32	Compression test (12):								
33	- compressive stress at 1 / 2 / 5 % nominal strain (11) +	ISO 604	MPa	35 / 67 / 92	35 / 65 / 98	30 / 60 / 99	34 / 64 / 93	34 / 64 / 93	31 / 58 / 85
34	Charpy impact strength - unnotched (13) +	ISO 179- 1/1eU	kJ/m²	80	50	no break	no break	no break	50
35	Charpy impact strength - notched +	ISO 179- 1/1eA	kJ/m²	3	3	4.9	3	3	4
36	Ball indentation hardness (15) +	ISO 2039-1	N/mm ²	170	195	165	165	165	145
37	Rockwell hardness (14) +	ISO 2039-2	-	M 85	M 87	M 88	M 88	M 87	M 82
		EL	ECTRICA	L PROPER	TIES AT 23 °	c			
38	Electric strength (15) +	IEC 60243-1	kV/mm	-	-	27	25	29	22
39	++	IEC 60243-1	kV/mm	-	18	-	17	19	14
40	Volume resistivity +	IEC 60093	Ohm. cm	> 1012	-	> 1014	> 1014	> 1014	> 1014
41	++	IEC 60093	Ohm. cm	> 1012	-	-	> 1012	> 1012	> 1012
42	Surface resistivity +	IEC 60093	Ohm	> 1011	> 1014	> 1014	> 1013	> 1013	> 1013
43	++	IEC 60093	Ohm	> 1010	-	-	> 1012	> 1012	> 1012
44	Relative permittivity ϵ_r :								
45	- at 100 Hz +	IEC 60250	-	-	-	3.8	3.6	3.6	3.5
46	++	IEC 60250	-	-	-	-	6.6	6.6	6.5
47	- at 1 MHz +	IEC 60250	-	-	-	3.3	3.2	3.2	3.1
48	++	IEC 60250	-	-	-	-	3.7	3.7	3.6
49	Dielectric dissipation factor tan δ:								
50	- at 100 Hz +	IEC 60250	-	-	-	0.013	0.012	0.015	0.015
51	++	IEC 60250	-	-	-	-	0.14	0.15	0.15
52	- at 1 MHz +	IEC 60250	-	-	-	0.020	0.016	0.017	0.016
53	++	IEC 60250	-	-	-	-	0.05	0.05	0.05
54	Comparative tracking index (CTI) +	IEC 60112	V	-	-	600	600	600	600

GE	^Z P		,		~			/	. /
Phys (indi	sical Properties cative values)	lest method	L'his	Mylations	Mulation® C.9	Mylation® A.	Mon. Hor	Mudeltone - SG	Cost Acetone C
1	Colour	-	-	blue	grey-black	grey	natural (ivo- ry)/ blue	purple	natural (white)/ black
2	Density	ISO 1183-1	g/cm³	1.15	1.16	1.14	1.135	1.11	1.41
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	49 / 93	52 / 98	40 / 76	44 / 83	40 / 76	20 / 37
5	in water of 23 °C (1)	ISO 62	%	0.72 / 1.37	0.76 / 1.43	0.59 / 1.12	0.66 / 1.24	0.61 / 1.16	0.24 / 0.45
6	- at saturation in air of 23 °C / 50 % RH	-	%	2.3	2.4	2	2	2	0.20
7	 at saturation in water of 23 °C 	-	%	6.6	6.7	6.3	6.3	6.3	0.80
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	215	215	215	215	215	165
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	0.29	0.30	0.29	0.28	0.30	0.31
11	Coefficient of linear thermal expansion:								
12	- average value between 23 and 60 °C	-	m/ (m.K)	80 x 10-6	80 x 10 ⁻⁶	80 x 10 ⁻⁶	80 x 10 ⁻⁶	85 x 10⁻ ⁶	110 x 10 ⁻⁶
13	 average value between 23 and 100 °C 	-	m/ (m.K)	90 x 10-6	90 x 10⁻ ⁶	95 x 10⁻	90 x 10⁻ ⁶	100 x 10 ⁻⁶	125 x 10 ⁻⁶
14	Temperature of deflection under load:		m/ (m.K)						
15	- method A: 1.8 MPa	ISO 75-1/-2	°C	80	80	75	75	70	100
16	Max. allowable service temperature in air :								
17	- for short periods (4)	-		170	170	165	165	160	140
18	- continuously: for 5,000 / 20,000 h (5)	-	°C	105/90	105/90	105/90	105/90	105/90	115/100
19	Min. service temperature (6)	-	°C	-30	-30	-30	-20	-20	-50
20	Flammability (7):	-	°C						
21	- "Oxygen Index"	ISO 4589- 1/-2	%	25	25	-	-	< 20	15
22	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB / HB	HB / HB	HB / HB	HB / HB	HB / HB	HB / HB

GE	Р		/	/	/ /	~	/	/	/	
Phys (indi	ical Properties cative values)		t method	83 .52	atton.	^{MC} 9	GSM ^{etton®} .	WSM, WSM,	atton.	03X
		,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	- 2 3 ⁷	- ANT	- ANT	- 1 37	ANT.	4 4 V
			MECH	ANICAL	PROPERTI	ES AT 23 °(C (8)			
23	Tension test (9):		100 507							
24	tensile stress at break (10)	+	1/-2	MPa	82 / -	80 / -	78 / -	72 / -	60 / -	66 / -
25		++	ISO 527- 1/-2	MPa	50 / -	50 / -	50 / -	45 / -	40 / -	66 / -
26	- tensile strength (10)	+	ISO 527- 1/-2	MPa	84	82	80	73	60	66
27	- tensile strain at yield (10)	+	ISO 527- 1/-2	%	5	5	5	5	6	15
28	- tensile strain at break (10)	+	ISO 527- 1/-2	%	35	25	25	25	15	40
29		++	ISO 527- 1/-2	%	> 50	> 50	> 50	> 50	> 25	50
30	 tensile modulus of elasticity (11) 	+	ISO 527- 1/-2	MPa	3300	3400	3150	3000	2750	3000
31		++	ISO 527- 1/-2	MPa	1600	1650	1525	1450	1350	3000
32	Compression test (12):									
33	- compressive stress at $1/2/5\%$ nominal strain (11)	+	ISO 604	MPa	32 / 61/ 90	33/62/91	31 / 59 / 87	31 / 58 / 85	26 / 48 / 69	23 / 40 / 72
34	Charpy impact strength -		ISO 179- 1/1el I	kJ/m²	no break	no break	75	50	25	no break
35	Charpy impact strength -		ISO 179- 1/1eA	kJ/m²	3	3	3.5	4	4	8
36	Ball indentation hardness (15)) +	ISO 2039-1	N/mm ²	160	160	150	145	120	140
37	Rockwell hardness (14)	+	ISO 2039-2	-	M 85	M 84	M 81	M 82	R 109	M 84
			ELE	ECTRICA	L PROPERI	TIES AT 23	°C		(101 59)	
38	Electric strength (15)	+	IEC 60243-1	kV/mm	25	24	25	22	-	20
39		++	IEC 60243-1	kV/mm	17	16	17	14	-	20
40	Volume resistivity	+	IEC 60093	Ohm. cm	> 1014	> 1014	> 1014	> 1014	> 1014	> 1014
41		++	IEC 60093	Ohm.	> 1012	> 1012	> 1012	> 1012	> 1012	> 1014
42	Surface resistivity	+	IEC 60093	Ohm	> 1013	> 1013	> 1013	> 1013	> 1013	> 1013
43		++	IEC 60093	Ohm	> 1012	> 1012	> 1012	> 1012	> 1012	> 1013
44	Relative permittivity ε_r :									
45	- at 100 Hz	+	IEC 60250	-	3.6	3.6	3.6	3.5	-	3.8
46		++	IEC 60250	-	6.6	6.6	6.6	6.5	-	3.8
47	- at 1 MHz	+	IEC 60250	-	3.2	3.2	3.2	3.1	_	3.8
48		++	IEC 60250	_	3.7	3.7	3.7	3.6	_	3.8
49	Dielectric dissipation factor				0	0.1	0.1	0.0		2.0
50	- at 100 Hz	+	IEC 60250	_	0.012	0.012	0.012	0.015	_	0.003
51		++	IEC 60250	-	0.14	0.14	0.14	0.15	_	0.003
52	- at 1 MHz	+	IEC 60250	-	0.016	0.016	0.016	0.016	_	0.008
52			IEC 60250	_	0.05	0.05	0.05	0.05		0.008
54	Comparative tracking index		IFC 60112	V	600	600	600	600		600
55	(CTI)	+++	IEC 60112	-	600	600	600	600	_	600
~~		· ·			000	000	000	0000		000

GE Phys (indi	P ical Properties cative values)	lest metho	Linis Cos	Erigoeigie	Erraceiale	CELS Acettone Food G. Muy	Erta Erta Cettono H ,	Ertacetale H.	Erall Head
1	Colour	-	-	natural (white)	black	blue	natural (white)/ black	deep brown	natural (white)/ black
2	Density	ISO 1183-1	g/cm³	1.43	1.41	1.46	1.43	1.50	1.39
3	Water absorption:								
4	- after 24/96 h immersion	ISO 62	mg	-	-	19 / 37	18/36	16 / 32	6/13
5	in water of 23 °C (1)	ISO 62	%	-	-	0.21 / 0.40	0.21 / 0.43	0.18 / 0.36	0.07 / 0.16
6	- at saturation in air of 23 °C / 50 % RH	-	%	-	0.20	0.19	0.20	0.17	0.25
7	- at saturation in water of 23 °C	-	%	< 0.1	0.80	0.75	0.80	0.72	0.50
			THE	RMAL PROP	ERTIES (2)				
8	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	170	173	165	180	180	245
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357- 1/-2	°C	-	-	-	-	-	-
10	Thermal conductivity at 23 °C	-	W/ (K.m)	-	-	0.31	0.31	0.31	0.29
11	Coefficient of linear thermal expansion:								
12	- average value between 23 and 60 °C	-	m/ (m.K)	110 x 10 ⁻⁶	110 x 10⁻6	115 x 10 ⁻⁶	95 x 10⁻	105 x 10 ⁻⁶	60 x 10 ⁻⁶
13	- average value between 23 and 100 °C	-	m/ (m.K)	125 x 10 ⁻⁶	125 x 10⁻	130 x 10 ⁻⁶	110 x 10 ⁻⁶	120 x 10 ⁻⁶	80 x 10 ⁻⁶
14	Temperature of deflection under load:		m/ (m.K)						
15	- method A: 1.8 MPa	ISO 75-1/-2	°C	100	105	100	110	100	80
16	Max. allowable service temperature in air :								
17	- for short periods (4)	-		140	140	140	150	150	160
18	- continuously: for 5,000 / 20,000 h (5)	-	°C	115/110	115 / 110	105/90	105/90	105/90	115/100
19	Min. service temperature (6)	-	°C	-50	-	-30	-50	-20	-20
20	Flammability (7):	-	°C						
21	- "Oxygen Index"	ISO 4589- 1/-2	%	NT	-	< 20	15	-	25
22	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB / HB	HB / HB	HB / HB	HB / HB	HB / HB	HB/HB

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m. NA: not applicable NYP: there is no yield point

< Erialutee (16)

GE	Р		/			/	/	/	/	>
Phys (indio	ical Properties cative values)		set methoc	nite oce	rtacetale	Clo tacetain	Cettone VIL.	rade trade t	the construction of the co	ne dr. 15
			MECH	ANICAL		ダ ES AT 23 ℃	₹4° C (8)	47	44	4
23	Tension test (9):									
24	- tensile stress at yield /		ISO 527-	MPa	66 / -	NYP / 30	66 / -	NYP / 78	NYP / 55	90 / -
25	tensile stress at break (10)	++	I/-2 ISO 527- 1/-2	MPa	-	-	66 / -	78/-	NYP / 55	90 / -
26	- tensile strength (10)	+	ISO 527- 1/-2	MPa	66	30	66	78	55	90
27	- tensile strain at yield (10)	+	ISO 527- 1/-2	%	12	-	14	NYP	NYP	4
28	- tensile strain at break (10)	+	ISO 527- 1/-2	%	50	8	15	25	10	15
29		++	ISO 527- 1/-2	%	-	-	15	50	10	15
30	 tensile modulus of elasticity (11) 	+	ISO 527- 1/-2	MPa	3100	1500	2950	3700	3100	3500
31		++	ISO 527- 1/-2	MPa	-	-	2950	3700	3100	3500
32	Compression test (12):									
33	- compressive stress at 1 / 2 / 5 % nominal strain (11)	+	ISO 604	MPa	27 / 45 / 78	14 / - 37	25 / 44 / 76	29 / 49 / 85	26 / 44 / 77	33 / 64 / 107
34	Charpy impact strength - unnotched (13)	+	ISO 179- 1/1eU	kJ/m²	no break	89	70	no break	30	50
35	Charpy impact strength - notched	+	ISO 179- 1/1eA	kJ/m²	7	5	5	10	3	2
36	Ball indentation hardness (15)) +	ISO 2039-1	N/mm²	145	77	155	160	140	170
37	Rockwell hardness (14)	+	ISO 2039-2	-	M 83	M 45	M 86	M 88	M 84	M 96
			ELI	ECTRICA		TIES AT 23	°C			
38	Electric strength (15)	+	IEC 60243-1	kV/mm	NT	-	-	20	20	22
39		++	IEC 60243-1	kV/mm	NT	-	-	20	20	22
40	Volume resistivity	+	IEC 60093	Ohm. cm	> 1013	-	> 1013	> 1014	> 1014	> 1014
41		++	IEC 60093	Ohm. cm	NT	-	> 1013	> 1014	> 1014	> 1014
42	Surface resistivity	+	IEC 60093	Ohm	NT	> 104	> 1012	> 10 ¹³	> 10 ¹³	> 10 ¹³
43		++	IEC 60093	Ohm	NT	-	> 1012	> 10 ¹³	> 10 ¹³	> 1013
44	Relative permittivity ϵ_r :									
45	- at 100 Hz	+	IEC 60250	-	-	-	-	3.8	3.6	3.4
46		++	IEC 60250	-	-	-	-	3.8	3.6	3.4
47	- at 1 MHz	+	IEC 60250	-	-	-	-	3.8	3.6	3.2
48		++	IEC 60250	-	-	-	-	3.8	3.6	3.2
49	Dielectric dissipation factor tan δ :									
50	- at 100 Hz	+	IEC 60250	-	-	-	-	0.003	0.003	0.001
51		++	IEC 60250	-	-	-	-	0.003	0.003	0.001
52	- at 1 MHz	+	IEC 60250	-	-	-	-	0.008	0.008	0.014
53		++	IEC 60250	-	-	-	-	0.008	0.008	0.014
54	Comparative tracking index (CTI)	+	IEC 60112	V	-	-	-	600	600	600
55		++	IEC 60112	-	-	-	-	600	600	600

-	-		/			
Phys (indi	ical Properties cative values)	est methods	inite statements	Fighter Tr.	Attonio Diversity	Clexiton Internation
			v	~		
1	Colour	-	-	pale grey	natural (clear, translucent)	natural (white)
2	Density	ISO 1183-1	g/cm³	1.44	1.20	1.20
3	Water absorption:					
4	- after 24/96 h immersion	ISO 62	mg	5/11	13 / 23	-
5	in water of 23 °C (1)	ISO 62	%	0.06 / 0.13	0.18/0.33	-
6	 at saturation in air of 23 °C / 50 % RH 	-	%	0.23	0.15	0.2
7	 at saturation in water of 23 °C 	-	%	0.47	0.40	0.65
		THERMAL PRO	PERTIES	(2)		
8	Melting temperature (DSC, 10 °C/min)	ISO 11357-1/-3	°C	245	-	210
9	Glass transition temperature (DSC, 20 °C/min) - (3)	ISO 11357-1/-2	°C	-	150	-
10	Thermal conductivity at 23 °C	-	W/(K.m)	0.29	0.21	0.19
11	Coefficient of linear thermal expansion:					
12	- average value between 23 and 60 °C	-	m/(m.K)	65 x 10⁻ ⁶	65 x 10 ⁻⁶	150 x 10 ⁻⁶
13	- average value between 23 and 100 °C	-	m/(m.K)	85 x 10⁻ ⁶	65 x 10 ⁻⁶	-
14	Temperature of deflection under load:		m/(m.K)			
15	- method A: 1.8 MPa	ISO 75-1/-2	°C	75	130	60
16	Max. allowable service temperature in air :					
17	- for short periods (4)	-		160	135	170
18	- continuously: for 5,000 / 20,000 h (5)	-	°C	115/100	130/120	-
19	Min. service temperature (6)	-	°C	-20	-50	-40
20	Flammability (7):	-	°C			
21	- "Oxygen Index"	ISO 4589-1/-2	%	25	25	-
22	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB / HB	HB / HB	-

23

Physical Properties (indicative values)

Tension test (9):

		l'est methou	500 Starting	Ertayutes Tr	Flextronin 1055 7011	Altroniu DC
MECI	HAN	ICAL PROPE	ERTIES A	Г 23 °С (8)		
/ (10)	+	ISO 527- 1/-2	MPa	76 / -	74 / -	20
	++	ISO 527- 1/-2	MPa	76 / -	74 / -	-
	+	ISO 527- 1/-2	MPa	76	74	-
10)	+	ISO 527- 1/-2	%	4	6	27

24	 tensile stress at yield / tensile stress at break (10) + 	ISO 527- 1/-2	MPa	76 / -	74 / -	20
25	++	ISO 527- 1/-2	MPa	76 / -	74 / -	-
26	- tensile strength (10) +	ISO 527- 1/-2	MPa	76	74	-
27	- tensile strain at yield (10) +	ISO 527- 1/-2	%	4	6	27
28	- tensile strain at break (10) +	ISO 527- 1/-2	%	5	> 50	> 350
29	++	ISO 527- 1/-2	%	5	> 50	-
30	- tensile modulus of elasticity (11) +	ISO 527- 1/-2	MPa	3300	2400	310
31	++	ISO 527- 1/-2	MPa	3300	2400	-
32	Compression test (12):					
33	- compressive stress at 1 / 2 / 5 % nominal strain (11) +	ISO 604	MPa	31 / 60 / 102	21 / 40 / 80	4 / - / 14
34	Charpy impact strength - unnotched (13) +	ISO 179- 1/1eU	kJ/m²	30	no break	no break
35	Charpy impact strength - notched +	ISO 179- 1/1eA	kJ/m²	2.5	9	90P
36	Ball indentation hardness (15) +	ISO 2039-1	N/mm ²	160	120	-
37	Rockwell hardness (14) +	ISO 2039-2	-	M 94	M 75	-
	ELEC	TRICAL PRO	PERTIES	AT 23 °C		
38	Electric strength (15) +	IEC 60243-1	kV/mm	21	28	20
39	++	IEC 60243-1	kV/mm	21	28	-
40	Volume resistivity +	IEC 60093	Ohm.cm	> 10 ¹⁴	> 1014	> 1014
41	++	IEC 60093	Ohm.cm	> 1014	> 1014	-
42	Surface resistivity +	IEC 60093	Ohm	> 1013	> 1013	> 1013
43	++	IEC 60093	Ohm	> 1013	> 1013	-
44	Relative permittivity ϵ_r :					
45	- at 100 Hz +	IEC 60250	-	3.4	3	-
46	++	IEC 60250	-	3.4	3	-
47	- at 1 MHz +	IEC 60250	-	3.2	3	4
48	++	IEC 60250	-	3.2	3	-
49	Dielectric dissipation factor tan δ :					
50	- at 100 Hz +	IEC 60250	-	0.001	0.001	-
51	++	IEC 60250	-	0.001	0.001	-
52	- at 1 MHz +	IEC 60250	-	0.014	0.008	0.04
53	++	IEC 60250	-	0.014	0.008	-
54	Comparative tracking index (CTI) +	IEC 60112	V	600	350 (225)	600
55	++	IEC 60112	-	600	350 (225)	-

General Engineering Plastic Stock Shapes

+ : values referring to dry material

- ++: values referring to material in equilibrium with the standard atmosphere 23 °C / 50 % RH (mostly derived from literature)
- (1) According to method 1 of ISO 62 and done on discs Ø 50 mm x 3 mm.
- (2) The figures given for these properties are for the most part derived from raw material supplier data and other publications.
- (3) Values for this property are only given here for amorphous materials and not for semi-crystalline ones.
- (4) Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material.
- (5) Temperature resistance over a period of 5,000/20,000 hours. Afterthese periods of time, there is a decrease in tensile strength measured at 23 °C of about 50 % as compared with the original value. The temperature values given here are thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note, however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.
- (6) Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected to impact. The values given here are based on unfavourable impact conditions and may consequently not be considered as being the absolute practical limits.
- (7) These estimated ratings, derived from raw material supplier data and other publications, are not intended to reflect hazards presented by the materials under actual fire conditions. There are no 'UL File Numbers' available for the General Engineering Plastic stock shapes.
- (8) The figures given for the properties of dry material (+) are for the most part average values of tests run on test specimens machined out of rods Ø 40 60 mm. Except for the hardness tests, the test specimens were then taken from an area mid between centre and outside diameter, with their length in longitudinal direction of the rod. Considering the very low water absorption of Ertacetal[®], Ertalyte[®] and Altron[™] 1000 PC, the values for the mechanical and electrical properties of these materials can be considered as being practically the same for dry (+) and moisture conditioned (++) test specimens.
- (9) Test specimens: Type 1 B
- (10) Test speed: 5 or 50 mm/min [chosen acc. to ISO10350-1 as a function of the ductile behaviour of the material (tough or brittle);
- only Ertalon 66-GF30, Ertacetal H-TF and Ertalyte TX were tested at 5 mm/min.
- (11) Test speed: 1 mm/min
- (12) Test specimens: cylinders Ø 8 mm x 16 mm
- (13) Pendulum used: 4 J
- (14) Measured on 10 mm thick test specimens (discs), mid between centre and outside diameter.
- (15) Electrode configuration: Ø 25 mm / Ø 75 mm coaxial cylinders; in transformer oil according to IEC 60296; 1 mm thick test specimens. Please note that the electric strength of black extruded material (Ertalon 6 SA, Ertalon 66 SA, Ertacetal and Ertalyte) can be considerably lower than the figure listed in the table which refers to natural material. Possible microporosity in the centre of polyacetal stock shapes also significantly reduces the electric strength.
 (15) The preparty values given below do not apply to the 2 6 mm thick Ertal te about
- (16) The property-values given below do not apply to the 2 6 mm thick Ertalyte sheets.
- (17) Nylatron® 66 SA FR fulfils the requirements as set out in the DIN EN 45545-2 regulation at which it is qualified according to the following tests and hazardous Levels: R17HL1; R23HL1; R24HL1,2,3; R26HL1,2,3
- This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product properties. However, they are not guaranteed and they should not be used to establish materialspecification limits nor used alone as the basis of design.

It has to be noted that Ertalon 66-GF30 is a fibre reinforced material and hence shows an anisotropic behaviour (properties differ when measured parallel and perpendicular to the extrusion direction).

As a result of our internal continuous improvement programmes, of availability and gathering of new and/or additional technical data, of increasing knowledge and experience, as well as of changing market requirements and revised internationally recognised material/test standards, Mitsubishi Chemical Advanced Materials is extending and updating its literature and technical information on a continuous basis. We therefore invite and recommend our customers to consult our website for he latest and up to date information on our materials.

PE Phys (indi	ical Properties cative values)	lest method	Units ²⁰ 0	11444°	00 11Vape antisiati_000	Than Econ	That a street	Thate Drive	¹ IVala [®] Hav
1	Colour	-	-	natural (white)/ green/ black / colours	black	green	black	black	blue
2	Average molar mass (average molecular weight) - (1)	-	10 ⁶ g/ mol	5	5	≥ 4.5	≥ 4.5	9	> 6
3	Density	ISO 1183-1	g/cm³	0.93	0.935	0.94	0.94	0.935	0.95
4	Water absorption at saturation in water of 23 °C	-	%	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
			THEF	RMAL PROPE	RTIES (2)				
5	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	135	135	135	135	135	135
6	Thermal conductivity at 23 °C	-	W/ (K.m)	0.40	0.40	0.40	0.40	0.40	-
7	Average coeff. of linear therm. exp. between 23 and 100 °C	-	m/ (m.K)	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	-
8	Temperature of deflection un- der load : - method A: 1.8 MPa	ISO 75-1/-2	°C	42	42	42	42	42	-
9	Vicat softening temperature - VST/B50	SO 306	°C	80	80	80	80	80	-
10	Max. allowable service temperature in air :		°C						
11	- for short periods (3)	-	°C	120	120	120	120	120	-
12	- continuously : for 20,000 h (4)	-	°C	80	80	80	80	80	-
13	Min. service temperature (5)	-	°C	-200 (6)	-150	-150	-150	-150	-200 (6)
14	Flammability (7):								
15	- "Oxygen Index"	ISO 4589- 1/-2	%	< 20	< 20	< 20	< 20	< 20	< 20
16	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB	HB	HB	HB	HB	HB

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m.

Physical P (ind

PE			8 /				green D.	ESD FSD	Slide
Physi indic	ical Properties cative values)	lest metho	or of	1111 Advent	100, 100, 100	TIVAR TIVAR EC	TIVAR® Antistae: Thistae: Co	TIVAP® D	Inda Hou
		МЕСН	ANICA	L PROPERT	IES AT 23	°C (8)	<i></i>		,
17	Tension test (9):								
18	- tensile stress at yield (10)	ISO 527- 1/-2	MPa	19	20	20	20	18	20
19	- tensile strain at yield (10)	ISO 527- 1/-2	%	15	15	15	15	20	16
20	- tensile strain at break (10)	ISO 527- 1/-2	%	> 50	> 50	> 50	> 50	> 50	> 50
21	 tensile modulus of elasticity (11) 	ISO 527- 1/-2	MPa	750	790	775	775	650	800
22	Compression test (12):								
23	- compressive stress at 1 / 2 / 5% nominal strain (11)	ISO 604	MPa	6.5 / 10.5 / 17	7 / 11 / 17.5	7 / 11 / 17.5	7 / 11 / 17.5	6 / 10 / 16	6.8 / 10.7 / 17.2
24	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	no break	no break	no break	no break	no break	no break
25	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	115P	110P	90P	90P	100P	108P
26	Charpy impact strength - Notched (double 14° notch) - (14)	ISO 11542- 2	kJ/m²	170	140	100	100	130	-
27	Ball indentation hardness (15)	ISO 2039-1	N/ mm²	33	34	34	34	32	35
28	Shore hardness D (15)	ISO 868	-	60	61	60	60	59	61
29	Relative volume loss during a wear test in "sand/water-slurry" ; TIVAR [®] 1000 = 100	ISO 15527	-	100	105	200	200	85	-
		ELI	ECTRIC	AL PROPER	RTIES AT 23	°C			
30	Electric strength (16)	IEC 60243- 1	kV/ mm	45	-	-	-	-	-
31	Volume resistivity	IEC 60093	Ohm. cm	> 1014	-	-	-	-	-
32	Surface resistivity	IEC 60093	Ohm	> 1012	< 10 ⁸	-	< 10 ⁸	< 10 ⁸	-
33	Relative permittivity ε _r : - at 100 Hz	IEC 60250	-	2.1	-	-	-	-	-
34	Relative permittivity ϵ_r :	IEC 60250	-	3.0	-	-	-	-	-
35	Dielectric dissipation factor tan δ : - at 100 Hz	IEC 60250	-	0.0004	-	-	-	-	-
36	Dielectric dissipation factor tan δ : - at 1 MHz	IEC 60250	-	0.0010	-	-	-	-	-
37	Comparative tracking index (CTI)	IEC 60112	V	600	-	-	-	-	-

Note: 1 g/cm³ = 1,000 kg/m³ ; 1 MPa = 1 N/mm² ; 1 kV/mm = 1 MV/m.

105

PE Phys (indi	sical Properties cative values)	lest method	L'hits	Indapa Teo.	INAR® OS	They Cestique	d me	^{Thange}	TVAR® BUNCH
						vellow-			
1	Colour	-	-	grey-black	yellow / grey	green	grey	bright white	black
2	Average molar mass (average molecular weight) - (1)	-	10 ⁶ g/ mol	9	9	9	9	9	5
3	Density	ISO 1183-1	g/cm³	0.935	0.93	0.96	0.96	0.93	1.01
4	Water absorption at saturation in water of 23 °C	-	%	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2
			THEF	MAL PROPE	ERTIES (2)				
5	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	135	135	135	135	135	135
6	Thermal conductivity at 23 °C	-	W/ (K.m)	0.40	0.40	0.40	0.40	0.40	0.40
7	Average coeff. of linear therm. exp. between 23 and 100 °C	-	m/(m.K)	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	180 x 10 ⁻⁶	200 x 10 ⁻⁶	180 x 10 ⁻⁶
8	Temperature of deflection under load : - method A: 1.8 MPa	ISO 75-1/-2	°C	42	42	42	42	42	42
9	Vicat softening temperature - VST/B50	SO 306	°C	80	80	80	80	80	84
10	Max. allowable service temperature in air :		°C						
11	- for short periods (3)	-	°C	120	120	120	120	135	120
12	- continuously : for 20,000 h (4)	-	°C	80	80	80	80	110	80
13	Min. service temperature (5)	-	°C	-150	-200 (6)	-150	-150	-200 (6)	-125
14	Flammability (7):								
15	- "Oxygen Index"	ISO 4589- 1/-2	%	< 20	< 20	< 20	< 20	< 20	28
16	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB	HB	HB	HB	HB	V-0

Physical Properties (indicative values)

PE Physi (indic	ical Properties cative values)	lest method	so sinite	Indexe Transformer	Hays oc	Middle Cestiour	d mere	Nikates H.	711498-841170-0-17 71149-841170-0-17 841170-8841170-0-1
		MECH	ANICAL	PROPERT	IES AT 23 °	°C (8)			
17	Tension test (9):								
18	- tensile stress at yield (10)	ISO 527-1/-2	MPa	19	19	18	17	19	16
19	- tensile strain at yield (10)	ISO 527-1/-2	%	15	15	15	20	15	15
20	- tensile strain at break (10)	ISO 527-1/-2	%	> 50	> 50	> 50	> 50	> 50	25
21	- tensile modulus of elasticity (11)	ISO 527-1/-2	MPa	725	700	750	600	700	1000
22	Compression test (12):								
23	- compressive stress at 1 / 2 / 5% nominal strain (11)	ISO 604	MPa	6.5 / 10.5 / 17	6/10/16	7 / 11 / 17.5	5 / 8.5 / 14.5	6/10/16	7 / 11 / 17
24	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	no break	no break	no break	no break	no break	no break
25	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	105P	100P	105P	90P	100P	70P
26	Charpy impact strength - Notched (double 14° notch) - (14)	ISO 11542-2	kJ/m²	120	130	125	115	130	70
27	Ball indentation hardness (15)	ISO 2039-1	N/ mm²	32	31	33	31	31	34
28	Shore hardness D (15)	ISO 868	-	59	58	60	58	58	58
29	Relative volume loss during a wear test in "sand/water-slurry" ; TIVAR [®] 1000 = 100	ISO 15527	-	85	85	75	80	80	130
		ELE	CTRIC	AL PROPER	TIES AT 23	°C			
30	Electric strength (16)	IEC 60243-1	kV/ mm	45	45	45	-	45	-
31	Volume resistivity	IEC 60093	Ohm. cm	> 10 ¹⁴	> 1014	> 1014	> 1014	> 1014	-
32	Surface resistivity	IEC 60093	Ohm	> 1012	> 1012	> 1012	> 1012	> 1012	< 10 ⁵
33	Relative permittivity ɛr: - at 100 Hz	IEC 60250	-	-	2.1	-	-	-	-
34	Relative permittivity ɛr: - at 1 MHz	IEC 60250	-	-	3.0	-	-	-	-
35	Dielectric dissipation factor tan δ : - at 100 Hz	IEC 60250	-	-	0.0004	-	-	-	-
36	Dielectric dissipation factor tan δ : - at 1 MHz	IEC 60250	-	-	0.0010	-	-	-	-
37	Comparative tracking index (CTI)	IEC 60112	V	-	600	-	-	-	-

PE Phys (indi	sical Properties cative values)	lest method	ciniis sinii	Intrapa Cos	^{anstat} Indapa ^{white} Cleans	tero.	1840 AST	Thats untro	^{rood}
1	Colour	-	-	black	white	black	black	grey	grey
2	Average molar mass (average molecular weight) - (1)	-	10 ⁶ g/ mol	5	5	9	5	9	9
3	Density	ISO 1183-1	g/cm³	0.94	0.95	0.95	0.945	0.995	0.93
4	Water absorption at saturation in water of 23 °C	-	%	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
			THER	MAL PROPE	ERTIES (2)				
5	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	135	135	135	135	135	135
6	Thermal conductivity at 23 °C	-	W/ (K.m)	0.40	0.40	0.40	0.40	0.40	0.40
7	Average coeff. of linear therm. exp. between 23 and 100 °C	-	m/(m.K)	200 x 10 ⁻⁶	220 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶	200 x 10 ⁻⁶
8	Temperature of deflection under load : - method A: 1.8 MPa	ISO 75-1/-2	°C	42	40	42	42	42	42
9	Vicat softening temperature - VST/B50	SO 306	°C	80	80	82	82	82	80
10	Max. allowable service temperature in air :		°C						
11	- for short periods (3)	-	°C	120	120	120	120	120	120
12	- continuously : for 20,000 h (4)	-	°C	80	80	80	80	80	80
13	Min. service temperature (5)	-	°C	-150	-200 (6)	-150	-150	-150	-150
14	Flammability (7):								
15	- "Oxygen Index"	ISO 4589- 1/-2	%	< 20	< 20	< 20	< 20	< 20	< 20
16	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB	HB	HB	НВ	НВ	HB

Physical Properties (indicative values)

PE Physi (indic	ical Properties cative values)	lest methods	e chilie	Line of the second seco	^{-lea} nstat Thans. White Cleans	topo	1144° CAST	Muape Untre Grade Untre	¹ NAA® Oli Filled
		месни	ANICAL	. PROPERT	IES AT 23	°C (8)		, í	
17	Tension test (9):								
18	- tensile stress at yield (10)	ISO 527-1/-2	MPa	19	18	21	21	19	16
19	- tensile strain at yield (10)	ISO 527-1/-2	%	15	11	15	15	15	40
20	- tensile strain at break (10)	ISO 527-1/-2	%	> 50	> 50	> 50	> 50	> 50	> 50
21	- tensile modulus of elasticity (11)	ISO 527-1/-2	MPa	750	580	800	825	775	375
22	Compression test (12):								
23	- compressive stress at 1 / 2 / 5% nominal strain (11)	ISO 604	MPa	6.5 / 10.5 / 17	5.8 / 9.7 / 15.9	7 / 11.5 / 18	7.5 / 12 / 19	7 / 11.5 / 18	4/6/10.5
24	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	no break	no break	no break	no break	no break	no break
25	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	110P	20	90P	105P	90P	80P
26	Charpy impact strength - Notched (double 14° notch) - (14)	ISO 11542-2	kJ/m²	120	-	80	110	105	140
27	Ball indentation hardness (15)	ISO 2039-1	N/ mm²	33	27	34	35	30	24
28	Shore hardness D (15)	ISO 868	-	60	60	61	62	62	54
29	Relative volume loss during a wear test in "sand/water-slurry" ; TIVAR® 1000 = 100	ISO 15527	-	85	95	85	100	75	95
		ELE	CTRIC	AL PROPER	TIES AT 23	°C			
30	Electric strength (16)	IEC 60243-1	kV/ mm	-	-	-	-	-	-
31	Volume resistivity	IEC 60093	Ohm. cm	-	10 ⁹ - 10 ¹⁰	-	-	> 1014	> 1014
32	Surface resistivity	IEC 60093	Ohm	< 107	≤ 10 ⁹	< 10 ⁶	< 105	> 1012	> 1012
33	Relative permittivity ε: - at 100 Hz	IEC 60250	-	-	8.26	-	-	-	-
34	Relative permittivity ɛr: - at 1 MHz	IEC 60250	-	-	2.49	-	-	-	-
35	Dielectric dissipation factor tan δ : - at 100 Hz	IEC 60250	-	-	1.78	-	-	-	-
36	Dielectric dissipation factor tan δ : - at 1 MHz	IEC 60250	-	-	0.028	-	-	-	-
37	Comparative tracking index (CTI)	IEC 60112	V	-	-	-	-	-	-

PE Phys (indi	sical Properties cative values)	lest method	Cinits de	I'ltape Cose.	I'llegte Suc	Borotone,	Boohome, Mors	Borottone,	^{Gh} Or ^O D		
1	Colour	-	-	green	grey	natural (off-white)	natural (off-white)	natural (off-white)	natural (off-white)		
2	Average molar mass (average molecular weight) - (1)	-	10 ⁶ g/ mol	9	9	5	5	5	0.5		
3	Density	ISO 1183-1	g/cm³	0.96	0.96	0.96	0.98	1.005	0.99		
4	Water absorption at saturation in water of 23 °C	-	%	< 0.1	< 0.1	-	-	-	-		
	THERMAL PROPERTIES (2)										
5	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	135	135	135	135	135	135		
6	Thermal conductivity at 23 °C	-	W/ (K.m)	0.40	0.40	≥ 0.50	≥ 0.65	≥ 0.80	≥ 0.50		
7	Average coeff. of linear therm. exp. between 23 and 100 °C	-	m/(m.K)	200 x 10 ⁻⁶	180 x 10 ⁻⁵	190 x 10 ⁻⁶	185 x 10 ⁻⁶	180 x 10 ⁻⁶	145 x 10 ⁻⁶		
8	Temperature of deflection under load : - method A: 1.8 MPa	ISO 75-1/-2	°C	42	42	42	42	42	45		
9	Vicat softening temperature - VST/B50	SO 306	°C	80	80	82	83	84	82		
10	Max. allowable service temperature in air :		°C								
11	- for short periods (3)	-	°C	120	120	120	120	120	120		
12	- continuously : for 20,000 h (4)	-	°C	80	80	80	80	80	80		
13	Min. service temperature (5)	-	°C	-150	-150	-100	-75	-50	-30		
14	Flammability (7):										
15	- "Oxygen Index"	ISO 4589- 1/-2	%	< 20	< 20	< 20	< 20	< 20	< 20		
16	- according to UL 94 (1.5 / 3 mm thickness)	-	-	HB	HB	HB	HB	HB	HB		

Physical Properties (indicative values)

PE Physi (indic	ical Properties ative values)	lest method	Christen Co	Line of the second seco	^{restigree} n Muape	Borottone	Borotone,	Gorotone	Borottone Huoso
		МЕСН	ANICAL	. PROPERT	IES AT 23 °	°C (8)			
17	Tension test (9):								
18	- tensile stress at yield (10)	ISO 527-1/-2	MPa	20	17	18	17	16	25
19	- tensile strain at yield (10)	ISO 527-1/-2	%	15	20	18	18	18	9
20	- tensile strain at break (10)	ISO 527-1/-2	%	> 50	> 50	> 50	> 50	> 50	20
21	- tensile modulus of elasticity (11)	ISO 527-1/-2	MPa	770	600	850	875	900	1500
22	Compression test (12):								
23	- compressive stress at 1 / 2 / 5% nominal strain (11)	ISO 604	MPa	7 / 11 / 17.5	5 / 8.5 / 14.5	7.5 / 12 / 18.5	8 / 12.5 / 19	8.5 / 13 / 19.5	13 / 20 / 28
24	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	no break	no break	no break	no break	80	35
25	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	60P	90P	50P	40P	30P	7C
26	Charpy impact strength - Notched (double 14° notch) - (14)	ISO 11542-2	kJ/m²	70	115	25	20	15	9
27	Ball indentation hardness (15)	ISO 2039-1	N/ mm²	33	31	34	35	36	52
28	Shore hardness D (15)	ISO 868	-	61	58	62	63	64	64
29	Relative volume loss during a wear test in "sand/water-slurry" ; TIVAR [®] 1000 = 100	ISO 15527	-	90	80	135	140	150	225
		ELE	CTRIC	AL PROPER	TIES AT 23	°C			
30	Electric strength (16)	IEC 60243-1	kV/ mm	-	-	-	-	-	-
31	Volume resistivity	IEC 60093	Ohm. cm	-	> 10 ¹⁴	> 1014	> 1014	> 1014	> 10 ¹⁴
32	Surface resistivity	IEC 60093	Ohm	< 10 9	> 1012	> 1012	> 1012	> 1012	> 1012
33	Relative permittivity ɛr: - at 100 Hz	IEC 60250	-	-	-	-	-	-	-
34	Relative permittivity ɛr: - at 1 MHz	IEC 60250	-	-	-	-	-	-	-
35	Dielectric dissipation factor tan δ : - at 100 Hz	IEC 60250	-	-	-	-	-	-	-
36	Dielectric dissipation factor tan δ : - at 1 MHz	IEC 60250	-	-	-	-	-	-	-
37	Comparative tracking index (CTI)	IEC 60112	V	-	-	-	-	-	-

Physical Properties (indicative values)

1	Colour	-	-	natural (off-white)	natural (off-white)	natural (white) / green / black / colours						
2	Average molar mass (average molecular weight) - (1)	-	10 ⁶ g/ mol	0.5	0.5	0.5						
3	Density	ISO 1183-1	g/cm³	1.01	1.035	0.96						
4	Water absorption at saturation in water of 23 °C	-	%	-	-	< 0.1						
	THERMAL PROPERTIES (2)											
5	Melting temperature (DSC, 10 °C/min)	ISO 11357- 1/-3	°C	135	135	135						
6	Thermal conductivity at 23 °C	-	W/ (K.m)	≥ 0.65	≥ 0.80	0.40						
7	Average coeff. of linear therm. exp. between 23 and 100 °C	-	m/(m.K)	140 x 10 ⁻⁶	135 x 10⁻ ⁶	150 x 10 ⁻⁶						
8	Temperature of deflection under load : - method A: 1.8 MPa	ISO 75-1/-2	°C	45	45	44						
9	Vicat softening temperature - VST/B50	SO 306	°C	83	84	80						
10	Max. allowable service temperature in air :		°C									
11	- for short periods (3)	-	°C	120	120	120						
12	- continuously : for 20,000 h (4)	-	°C	80	80	80						
13	Min. service temperature (5)	-	°C	-25	-20	-100						
14	Flammability (7):											
15	- "Oxygen Index"	ISO 4589- 1/-2	%	< 20	< 20	< 20						
16	 according to UL 94 (1.5 / 3 mm thickness) 	-	-	HB	HB	HB						

< lest methods

Units

Borotono Hulozo

A Borotrone HINOSO

▶
 ▶
 ▶
 \$\$500

Physical Properties (indicative values)

PE Phys (indic	ical Properties cative values)	lest method	Unite COS	Boot One	Bootions.	PE 500
	MECHANIC	AL PROPER	TIES AT	23 °C (8)		
17	Tension test (9):					
18	- tensile stress at yield (10)	ISO 527-1/-2	MPa	23	21	28
19	- tensile strain at yield (10)	ISO 527-1/-2	%	8	6.5	10
20	- tensile strain at break (10)	ISO 527-1/-2	%	15	7	> 50
21	- tensile modulus of elasticity (11)	ISO 527-1/-2	MPa	1550	1600	1300
22	Compression test (12):					
23	- compressive stress at 1 / 2 / 5% nominal strain (11)	ISO 604	MPa	13.5 / 20.5 /28.5	14 / 21 / 29	12 / 18.5 / 26.5
24	Charpy impact strength - unnotched (13)	ISO 179- 1/1eU	kJ/m²	25	15	no break
25	Charpy impact strength - notched	ISO 179- 1/1eA	kJ/m²	6C	5C	105P
26	Charpy impact strength - Notched (double 14° notch) - (14)	ISO 11542-2	kJ/m²	8.5	8	25
27	Ball indentation hardness (15)	ISO 2039-1	N/ mm²	55	58	48
28	Shore hardness D (15)	ISO 868	-	65	66	62
29	Relative volume loss during a wear test in "sand/water-slurry" ; TIVAR [®] 1000 = 100	ISO 15527	-	275	350	350
	ELECTR	ICAL PROPE		T 23 °C		
30	Electric strength (16)	IEC 60243-1	kV/ mm	-	-	45
31	Volume resistivity	IEC 60093	Ohm. cm	> 1014	> 1014	> 10 ¹⁴
32	Surface resistivity	IEC 60093	Ohm	> 1012	> 1012	> 10 ²
33	Relative permittivity επ - at 100 Hz	IEC 60250	-	-	-	2.4
34	Relative permittivity ɛː: - at 1 MHz	IEC 60250	-	-	-	2.4
35	Dielectric dissipation factor tan δ : - at 100 Hz	IEC 60250	-	-	-	0.0002
36	Dielectric dissipation factor tan δ : - at 1 MHz	IEC 60250	-	-	-	0.0002
37	Comparative tracking index (CTI)	IEC 60112	V	-	-	600

Polyethylene Plastic Stock Shapes

- (1) These are the average molar masses of the PE-(U)HMW resins (irrespective of any additives) used for the manufacture of the materials. They are calculated by means of the Margolies-equation M = 5.37 x 104 x [η]1.49, with [η] being the intrinsic viscosity (Staudinger index) derived from a viscosity measurement according to ISO 1628-3:2001, using decahydronaphtalene as a solvent (concentration of 0.001 g/cm³ for PE-HMW and 0.0002 g/cm³ for PE-UHMW).
- (2) The figures given for these properties are for the most part derived from raw material supplier data and other publications.
- (3) Only for short time exposure (a few hours) in applications where no or only a very low load is applied to the material.
- (4) Temperature resistance over a period of 20,000 hours. After this period of time, there is a decrease in tensile strength measured at 23 °C of about 50 % as compared with the original value. The temperature values given here are thus based on the thermal-oxidative degradation which takes place and causes a reduction in properties. Note, however, that the maximum allowable service temperature depends in many cases essentially on the duration and the magnitude of the mechanical stresses to which the material is subjected.
- (5) Impact strength decreasing with decreasing temperature, the minimum allowable service temperature is practically mainly determined by the extent to which the material is subjected to impact. The values given here are based on unfavourable impact conditions and may consequently not be considered as being the absolute practical limits.
- (6) Because of its outstanding toughness, this material withstands even the temperature of liquid helium (-269 °C) at which it still maintains a useful impact resistance without shattering.
- (7) These estimated ratings, derived from raw material supplier data and other publications, are not intended to reflect hazards presented by the materials under actual fire conditions. There are no 'UL File Numbers' available for the PE-(U) HMW stock shapes.
- (8) The figures given for these properties are average values of tests run on test specimens machined out of 20 30 mm thick plates.
- (9) Test specimens: Type 1 B
- (10) Test speed: 50 mm/min
- (11) Test speed: 1 mm/min
- (12) Test specimens: cylinders Ø 8 mm x 16 mm.
- (13) Pendulum used: 15 J
- (14) Pendulum used: 25 J
- (15) Measured on 10 mm thick test specimens.
- (16) Electrode configuration: Ø 25 mm / Ø 75 mm coaxial cylinders ; in transformer oil according to IEC 60296 ; 1 mm thick test specimens. Please note that the electric strength of black material (PE 500 black and TIVAR 1000 black) can be considerably lower than the figure listed in the table which refers to natural material.
- (17) Taking into consideration the varying composition of these grades which are partially composed of reprocessed PE-UHMW material, their physical properties can differ more from batch to batch than those of the other PE-UHMW grades.
- This table, mainly to be used for comparison purposes, is a valuable help in the choice of a material. The data listed here fall within the normal range of product properties. However, they are not guaranteed and they should not be used to establish material specification limits nor used alone as the basis of design.

As a result of our internal continuous improvement programmes, of availability and gathering of new and/or additional technical data, of increasing knowledge and experience, as well as of changing market requirements and revised internationally recognised material/test standards, Mitsubishi Chemical Advanced Materials is extending and updating its literature and technical information on a continuous basis. We therefore invite and recommend our customers to consult our website for he latest and up to date information on our materials.

Get in touch

North America Mitsubishi Chemical Advanced Materials Inc.

2120 Fairmont Avenue PO Box 14235 — Reading, PA 19612-4235 Tel: 800 366 0300 +1 610 320 6600

Europe

Mitsubishi Chemical Advanced Materials NV

Galgenveldstraat 12 8700 Tielt, Belgium Tel: +32 051 42 35 11 Asia-Pacific Mitsubishi Chemical Advanced Materials Asia Pacific Ltd.

Unit 7B, 35/F, Cable TV Tower, 9 Hoi Shing Road, Tsuen Wan, Hong Kong Tel: +852 2470 26 83

Belgium | Brazil | China | France | Germany | Hong Kong | Hungary | India | Italy | Japan | Korea | Mexico South Africa | Switzerland | The Netherlands | United Kingdom | United States Of America

All statements, technical information and recommendations contained in this publication are presented in good faith and are, as a rule, based upon tests and such tests are believed to be reliable and practical field experience. The reader, however, is cautioned, that Mitsubishi Chemical Advanced Materials does not guarantee the accuracy or completeness of this information. It is the customer's responsibility to determine the suitability of Mitsubishi Chemical Advanced Materials' products in any given application. Acetron®, Altron™, Duratron®, Ertacetal®, Ertalon®, Ertalyte®, Flextron™, Fluorosint®, Ketron®, Nylatron®, Sultron®, QuickSilver®, Semitron®, Techtron® and TIVAR® are registered trademarks of the Mitsubishi Chemical Advanced Materials group. DELRIN® is a registered trademark of DuPont. Radel® is a registered trademark of Solvay SA. Design and content created by Mitsubishi Chemical Advanced Materials and protected by copyright law. Copyright © 2022 Mitsubishi Chemical Advanced Materials. All rights reserved.

